BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 79, Number 2, March 1973

RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited. Manuscripts more than eight typewritten double spaced pages long will not be considered as acceptable. All research announcements are communicated by members of the Council of the American Mathematical Society. An author should send his paper directly to a Council member for consideration as a research announcement. A list of members of the Council for 1973 is given at the end of this issue.

ON A QUESTION OF DOUGLAS AND FILLMORE

BY JAMES A. DEDDENS¹ AND JOSEPH G. STAMPFLI² Communicated by Robert G. Bartle, September 27, 1972

Let \mathscr{K} denote the ideal of compact operators in $\mathscr{B}(H)$, the bounded linear operators on a Hilbert space H, and let v denote the canonical homomorphism from $\mathscr{B}(H)$ onto the Calkin algebra $\mathscr{B}(H)/\mathscr{K}$. Brown, Douglas, and Fillmore [2], in an elegant and interesting paper, showed that if v(T) is normal, if $\sigma_e(T) \equiv \sigma(v(T))$ is homeomorphic to a finite graph, and if the Fredholm index $i(T - \lambda) = 0$ for λ in the holes of $\sigma_e(T)$, then T is the sum of a normal operator and a compact operator. It thus becomes natural to ask whether a similar analysis can be carried out when $\sigma_e(T)$ has positive area. Let us consider the simplest case. If $\sigma_e(T) = \Delta$, the closed unit disc, and if v(T) is normal, is T of the form normal plus compact? To indicate the limited scope of our knowledge in this area it is not even known whether the operator $S \oplus M$ is normal plus compact, where S is the unilateral shift and M is multiplication by z on $L^2(\Delta, dm)$. In fact R. G. Douglas [4, p. 62] raises this specific question, which had earlier been broached by P. A. Fillmore.

In this note we will give an affirmitive answer to the Douglas–Fillmore question. Unfortunately, the techniques employed here do not shed much light on the general problem.

AMS(MOS) subject classifications (1970). Primary 47B05, 47B15, 47B20.

Key words and phrases. Normal operator, compact operator, weighted shift, subnormal operator.

¹ This author gratefully acknowledges the support of the University of Kansas General Research Fund.

² This author gratefully acknowledges the support of the National Science Foundation.

Copyright © American Mathematical Society 1973