BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 79, Number 1, January 1973

FINITELY GENERATED SUBMODULES OF DIFFERENTIABLE FUNCTIONS. II

BY B. ROTH

Communicated by François Treves, July 24, 1972

1. Introduction. Let $\mathscr{E}(\Omega)$ denote the space of real-valued infinitely differentiable functions on an open set Ω in \mathscr{R}^n equipped with the topology of uniform convergence of all derivatives on all compact subsets of Ω . Throughout we assume that Ω is connected.

Let $[\mathscr{E}(\Omega)]^p$ denote the Cartesian product of $\mathscr{E}(\Omega)$ with itself *p*-times equipped with the product topology. Then $[\mathscr{E}(\Omega)]^p$ is a Frechet space and a $\mathscr{E}(\Omega)$ -module. In [3], the finitely generated submodules of $[\mathscr{E}^m(\Omega)]^p$ which are closed in $[\mathscr{E}^m(\Omega)]^p$ are characterized for $m < \infty$ and we are here concerned with the same problem for $m = \infty$.

2. The main result. Consider the finitely generated submodule $M = \{g_1f_1 + \cdots + g_qf_q; g_1, \ldots, g_q \in \mathscr{E}(\Omega)\}$ of $[\mathscr{E}(\Omega)]^p$ where $f_j = (f_{1j}, \ldots, f_{pj}) \in [\mathscr{E}(\Omega)]^p$ for $1 \leq j \leq q$. Let F be the $p \times q$ matrix $(f_{ij})_{1 \leq i \leq p; 1 \leq j \leq q}$. Then $F: [\mathscr{E}(\Omega)]^q \to [\mathscr{E}(\Omega)]^p$ and $\operatorname{im}(F) = M$. In [2, pp. 21–25], Malgrange shows that $M = \operatorname{im}(F)$ is closed in $[\mathscr{E}(\Omega)]^p$ if each f_{ij} is real analytic on Ω . A zero of a function is said to be a zero of finite order if some derivative of the function fails to vanish there. Our main result is

THEOREM 1. Suppose $F = (f_{ij})_{1 \le i \le p; 1 \le j \le q}$, $f_{ij} \in \mathscr{E}(\Omega)$, and let $r = \max\{\operatorname{rank}(F(x)): x \in \Omega\}$. For $\Omega \subset \mathscr{R}^n$, if the finitely generated submodule $\operatorname{im}(F)$ is closed in $[\mathscr{E}(\Omega)]^p$, then for every $x \in \Omega$ with $\operatorname{rank}(F(x)) < r$ there exists an $r \times r$ submatrix A of F such that x is a zero of finite order of $\det(A)$. For $\Omega \subset \mathscr{R}^1$, the converse also holds.

For $\Omega \subset \mathscr{R}^n$, n > 1, the converse fails to hold [1, p. 89]. For $\Omega \subset \mathscr{R}^1$, the fact that the zeros of finite order condition is sufficient follows from Malgrange's characterization of the closure of a submodule of differentiable functions [1, Corollary 1.7, p. 25]. For $\Omega \subset \mathscr{R}^n$, the necessity of the zeros of finite order condition can be demonstrated in the following manner. Assuming that im(F) is closed in $[\mathscr{E}(\Omega)]^p$, we have by the closed range theorem for Frechet spaces that $im(F') = [ker(F)]^{\perp}$ where $F': [\mathscr{E}'(\Omega)]^p \to [\mathscr{E}'(\Omega)]^q$ is the transpose of F. Assuming that the set Z_{∞} of $x \in \Omega$ for which x is a zero of infinite order of det(A) for every $r \times r$

AMS (MOS) subject classifications (1970). Primary 46E25, 46E40; Secondary 34A30, 35G05, 46F10.

Key words and phrases. Spaces of differentiable functions, modules of differentiable functions, finitely generated submodules, spaces of distributions, systems of linear differential equations.