FINITELY GENERATED SUBMODULES OF DIFFERENTIABLE FUNCTIONS. II

BY B. ROTH
Communicated by François Treves, July 24, 1972

1. Introduction. Let $\mathscr{E}(\Omega)$ denote the space of real-valued infinitely differentiable functions on an open set Ω in \mathscr{R}^{n} equipped with the topology of uniform convergence of all derivatives on all compact subsets of Ω. Throughout we assume that Ω is connected.

Let $[\mathscr{E}(\Omega)]^{p}$ denote the Cartesian product of $\mathscr{E}(\Omega)$ with itself p-times equipped with the product topology. Then $[\mathscr{E}(\Omega)]^{p}$ is a Frechet space and a $\mathscr{E}(\Omega)$-module. In [3], the finitely generated submodules of $\left[\mathscr{E}^{m}(\Omega)\right]^{p}$ which are closed in $\left[\mathscr{E}^{m}(\Omega)\right]^{p}$ are characterized for $m<\infty$ and we are here concerned with the same problem for $m=\infty$.
2. The main result. Consider the finitely generated submodule $M=$ $\left\{g_{1} f_{1}+\cdots+g_{q} f_{q}: g_{1}, \ldots, g_{q} \in \mathscr{E}(\Omega)\right\}$ of $[\mathscr{E}(\Omega)]^{p}$ where $f_{j}=\left(f_{1 j}, \ldots, f_{p j}\right) \in$ $[\mathscr{E}(\Omega)]^{p}$ for $1 \leqq j \leqq q$. Let F be the $p \times q$ matrix $\left(f_{i j}\right)_{1 \leqq i \leqq p ; 1 \leqq j \leqq q}$. Then $F:[\mathscr{E}(\Omega)]^{q} \rightarrow[\mathscr{E}(\Omega)]^{p}$ and $\operatorname{im}(F)=M$. In [2, pp. 21-25], Malgrange shows that $M=\operatorname{im}(F)$ is closed in $[\mathscr{E}(\Omega)]^{p}$ if each $f_{i j}$ is real analytic on Ω. A zero of a function is said to be a zero of finite order if some derivative of the function fails to vanish there. Our main result is

Theorem 1. Suppose $F=\left(f_{i j}\right)_{1 \leqq i \leqq p ; 1 \leqq j \leqq q}, f_{i j} \in \mathscr{E}(\Omega)$, and let $r=$ $\max \{\operatorname{rank}(F(x)): x \in \Omega\}$. For $\Omega \subset \mathscr{R}^{n}$, if the finitely generated submodule $\operatorname{im}(F)$ is closed in $[\mathscr{E}(\Omega)]^{p}$, then for every $x \in \Omega$ with $\operatorname{rank}(F(x))<r$ there exists an $r \times r$ submatrix A of F such that x is a zero of finite order of $\operatorname{det}(A)$. For $\Omega \subset \mathscr{R}^{1}$, the converse also holds.

For $\Omega \subset \mathscr{R}^{n}, n>1$, the converse fails to hold [1, p. 89]. For $\Omega \subset \mathscr{R}^{1}$, the fact that the zeros of finite order condition is sufficient follows from Malgrange's characterization of the closure of a submodule of differentiable functions [1, Corollary 1.7, p. 25]. For $\Omega \subset \mathscr{R}^{n}$, the necessity of the zeros of finite order condition can be demonstrated in the following manner. Assuming that $\operatorname{im}(F)$ is closed in $[\mathscr{E}(\Omega)]^{p}$, we have by the closed range theorem for Frechet spaces that $\operatorname{im}\left(F^{\prime}\right)=[\operatorname{ker}(F)]^{\perp}$ where $F^{\prime}:\left[\mathscr{E}^{\prime}(\Omega)\right]^{p} \rightarrow\left[\mathscr{E}^{\prime}(\Omega)\right]^{q}$ is the transpose of F. Assuming that the set Z_{∞} of $x \in \Omega$ for which x is a zero of infinite order of $\operatorname{det}(A)$ for every $r \times r$

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 46E25, 46E40; Secondary 34A30, 35G05, 46F10.

 Key words and phrases. Spaces of differentiable functions, modules of differentiable functions, finitely generated submodules, spaces of distributions, systems of linear differential equations.

