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1. Introduction. Let ê{Q) denote the space of real-valued infinitely 
differentiable functions on an open set Q in 0tn equipped with the topology 
of uniform convergence of all derivatives on all compact subsets of Q. 
Throughout we assume that Q is connected. 

Let [S'(Q)]P denote the Cartesian product of S (Q) with itself p-times 
equipped with the product topology. Then [^(Q)]p is a Frechet space 
and a S(Q)-module. In [3], the finitely generated submodules of [S>m{Q)]p 

which are closed in [<fm(Q)]p are characterized for m < oo and we are 
here concerned with the same problem for m = oo. 

2. The main result. Consider the finitely generated submodule M = 
{gJi + '" +g^:gi, . . . ,g,G^(Q)}of[AQ)rwhere/ J . = (/u,...,/pj.)6 
[<?(Q)]P for I g>j ^ q. Let F be the p x q matrix (fij)igi^Pii^j^q' Then 
F:[S(Q)]q -+ WQ)]P and im(F) = M. In [2, pp. 21-25], Malgrange shows 
that M = im(F) is closed in [${£ï)\p if each ftj is real analytic on fi. A zero 
of a function is said to be a zero of finite order if some derivative of the 
function fails to vanish there. Our main result is 

THEOREM 1. Suppose F = ( / 0 ) i ^ p ; i ^ < ^ , / 0 G ^ ( Q ) , and let r = 
max{rank(F(x)):xeQ}. For Q c 3kn, if the finitely generated submodule 
im(F) is closed in [^(Q)]p, then for every xeQ with rank(F(x)) < r there 
exists an r x r submatrix A of F such that x is a zero of finite order of 
det(A). For Q c i 1 , the converse also holds. 

For Q c «n , n > 1, the converse fails to hold [1, p. 89]. For Q c St1, 
the fact that the zeros of finite order condition is sufficient follows from 
Malgrange's characterization of the closure of a submodule of differ
entiable functions [1, Corollary 1.7, p. 25]. For Q <r ^T, the necessity of 
the zeros of finite order condition can be demonstrated in the following 
manner. Assuming that im(F) is closed in [< (̂Q)]P, we have by the closed 
range theorem for Frechet spaces that im(F') = [ker(F)]1 where 
F':[<f(Q)f -» [<T(Q)]« is the transpose of F. Assuming that the set Zœ 

of x G Q for which x is a zero of infinite order of det(v4) for every r x r 
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