ON OPERATOR-VALUED STOCHASTIC INTEGRALS

BY HUI-HSIUNG KUO¹ Communicated by Harry Kesten, June 7, 1972

1. Introduction. The purpose of this note is to announce some theorems concerning the operator-valued stochastic integrals which arise naturally from the study of the regularity properties of solutions of stochastic integral equations. Proofs and detailed discussion will be given in [7]. Let $B^* \subset H \subset B$ be an abstract Wiener space [1] and W(t) a Wiener process in B. Various stochastic integrals associated with W(t) were studied and an infinite-dimensional version of Ito's formula [2] was proved in [5]. This formula was used to connect the solution of a stochastic integral equation with the corresponding heat equation [8]. In [6] we proved another version of Ito's formula which was used to construct diffusion processes, in particular, a Brownian motion, in a Riemann-Wiener manifold. We present here a third version of Ito's formula and use it to prove an infinite-dimensional analogue of a formula on p. 58 of McKean's book [9]. An operator-valued stochastic integral has been studied by Kannan and Bharucha-Reid [4]. However, there appears to be no relation between their work and ours in this paper.

2. Notation and definitions. Let X and Y be two real Banach spaces. $L^{n}(X; Y)$ denotes the Banach space of all continuous *n*-linear maps from X^n into Y with the usual norm $\|\cdot\|_{X^n;Y}$. L^1 will be written as L. $L^{n-1}(X;X^*)$ will be identified as $L^{\prime}(X; R)$ in a well-known way. $L^{2}_{(2)}(H; R) (\equiv L_{(2)}(H; H))$ denotes the Hilbert space of all Hilbert-Schmidt operators of H with H-S-norm $\|\cdot\|_2 = \langle \langle , \rangle \rangle^{1/2}$. We have the relation $L^2(B; R) \subset L^2(B; R)$.

DEFINITION. Let K be a Hilbert space with inner product (,). A continuous bilinear map S from $H \times H$ into K is said to be of trace class type if (i) for each $x \in K$, S_x is a trace class operator of H, where $S_x(\cdot, \cdot) =$ $(S(\cdot,\cdot),x)$ and (ii) the functional $x \to \text{trace } S_x$ is continuous. $\mathscr{G}(H;K)$ denotes the space consisting of all such continuous bilinear maps.

Let S be of trace class type. Then there is a unique element, denoted by TRACE S, of K such that (TRACE S, x) = trace S_x for all $x \in K$. Note that $L^2(B; L(B, B^*)) \subset \mathcal{G}(H; L_{(2)}(H; H))$.

AMS (MOS) subject classifications (1970). Primary 60H05, 60H20.

Key words and phrases. Abstract Wiener space, Ito's formula, operator-valued process, trace class type, Hilbert-Schmidt type, stochastic differential equation, Girsanov-Skorokhod-McKean's formula.

¹ This research was supported in part by NSF grant GU-3784.

Copyright © American Mathematical Society 1973