HIGHER K-THEORY FOR REGULAR SCHEMES

BY S. M. GERSTEN

Communicated by Morton L. Curtis, July 17, 1972

Abstract

Higher K-groups are defined for regular schemes, generalizing the K-theory of Karoubi and Villamayor. A spectral sequence is developed which shows how the K-groups depend on the local rings of the scheme. Applications to curves and affine surfaces are given.

Let X be a regular separated scheme. If U is an affine open subset of X, then the assignment $U \mapsto \operatorname{BGl}\left(S^{n} \Gamma\left(U, O_{X}\right)_{*}\right)$ is a sheaf of Kan complexes on the Zariski site. Here S denotes the suspension ring functor of Karoubi [10] and if A is a ring, A_{*} denotes the simplicial ring [11]

$$
\left(A_{*}\right)_{n}=A\left[t_{0}, t_{1}, \ldots, t_{n}\right] /\left(t_{0}+\cdots+t_{n}-1\right) .
$$

We recall that $\pi_{i} \mathrm{BGl} A_{*}=K^{-i} A, i \geqq 1$ [11], where the K-groups of Karoubi and Villamayor are indicated [10]. Also, recall that $K_{0}(A)$ $\times \operatorname{BGl}\left(A_{*}\right) \simeq \Omega \mathrm{BGl}\left(S A_{*}\right)$ if A is K-regular ([9], [8]). Thus there is a sheaf of Kan spectra $E\left(O_{X}\right)$ on X associated to the pre-spectrum $U \mapsto$ $\left(n \mapsto \operatorname{BGl}\left(S^{n} \Gamma\left(U, O_{X}\right)_{*}\right)\right)$. Such sheaves have been studied by K. Brown [4] who has defined cohomology with coefficients in a sheaf of Kan spectra: $H^{n}\left(X, E\left(O_{X}\right)\right), n \in Z$.

Definition. $K^{n}(X)=H^{n}\left(X, E\left(O_{X}\right)\right)$.
We remark that the spectra $E\left(O_{X}\right)$ are connected since X is regular, so $K^{i}(X)=0$ if $i>0$. The main properties of these groups and most of the motivation for introducing them are summarized in
Theorem 1. Let X be a regular separated scheme.
(1) If U and V are open subschemes of X, then there is an exact MayerVietoris sequence

$$
\cdots \rightarrow K^{i-1}(U \cap V) \rightarrow K^{i}(U \cup V) \rightarrow K^{i}(U) \oplus K^{i}(V) \rightarrow K^{i}(U \cap V) \rightarrow \cdots
$$

(2) If X has finite (Krull) dimension, then there is a fourth quadrant spectral sequence of cohomological type

$$
E_{2}^{p q}=H^{p}\left(X, \underline{K}^{q}\right) \Rightarrow K^{p+q}(X)
$$

Here \underline{K}^{q} is the sheaf in the Zariski site associated to the presheaf

$$
U \mapsto K^{q}\left(\Gamma\left(U, O_{X}\right)\right), \quad U \text { affine open. }
$$

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 18F25, 55B15, 16A54, 13D15, 55F50, 18G30, 55B20, 55D35.

