POSITIVE HARMONIC FUNCTIONS AND BIHARMONIC DEGENERACY¹

BY LEO SARIO AND CECILIA WANG Communicated by S. S. Chern, August 9, 1972

The class O_{HP} of Riemann surfaces or Riemannian manifolds which do not carry (nonconstant) positive harmonic functions is the smallest harmonically or analytically degenerate class. In particular, it is strictly contained in the classes O_{HB} and O_{HD} of Riemann surfaces or Riemannian manifolds without bounded or Dirichlet finite harmonic functions, and in the classes O_{AB} and O_{AD} of Riemann surfaces without bounded or Dirichlet finite analytic functions.

In the present paper we ask: Are there any relations between O_{HP} and the classes O_{H^2B} and O_{H^2D} of Riemannian manifolds without bounded or Dirichlet finite nonharmonic biharmonic functions? We shall show that the answer is in the negative. Explicitly, if O^N is a null class of N-dimensional manifolds, and \tilde{O}^N its complement, then all four classes

$$O^N_{HP} \cap O^N_{H^2X}, \qquad O^N_{HP} \cap \widetilde{O}^N_{H^2X}, \qquad \widetilde{O}^N_{HP} \cap O^N_{H^2X}, \qquad \widetilde{O}^N_{HP} \cap \widetilde{O}^N_{H^2X}$$

are nonempty for both X = B and D, and for any N. This independence of N is of interest, as biharmonic degeneracy often fails to have this property. Typically, whereas the punctured Euclidean N-space is not an element of $O_{H^2B}^N$ for N = 2, 3, it does belong to it for all $N \ge 4$ (Sario-Wang [6]).

Methodologically, we introduce in §1 a simple type of Riemannian manifold which, on account of its rectangular coordinates and nonconformal metric, is very versatile in classification problems.

1. We shall show

THEOREM 1. $O_{HP}^N \cap \widetilde{O}_{H^2B}^N \neq \emptyset$ for every N.

PROOF. Consider the *N*-manifold, $N \ge 2$,

$$T = \{0 < x < \infty, 0 \leq y \leq 2\pi, 0 \leq z_i \leq 2\pi\},\$$

i = 1, ..., N - 2, with y = 0, $y = 2\pi$ identified, and $z_i = 0$, $z_i = 2\pi$ also identified for every *i*. Endow T with the metric

AMS (MOS) subject classifications (1970). Primary 31B30.

¹ This work was sponsored by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-G181, University of California, Los Angeles.

Copyright © American Mathematical Society 1973