POSITIVE HARMONIC FUNCTIONS AND BIHARMONIC DEGENERACY ${ }^{1}$

BY LEO SARIO AND CECILIA WANG

Communicated by S. S. Chern, August 9, 1972

The class $O_{H P}$ of Riemann surfaces or Riemannian manifolds which do not carry (nonconstant) positive harmonic functions is the smallest harmonically or analytically degenerate class. In particular, it is strictly contained in the classes $O_{H B}$ and $O_{H D}$ of Riemann surfaces or Riemannian manifolds without bounded or Dirichlet finite harmonic functions, and in the classes $O_{A B}$ and $O_{A D}$ of Riemann surfaces without bounded or Dirichlet finite analytic functions.

In the present paper we ask: Are there any relations between $O_{H P}$ and the classes $O_{H^{2} B}$ and $O_{H^{2} D}$ of Riemannian manifolds without bounded or Dirichlet finite nonharmonic biharmonic functions? We shall show that the answer is in the negative. Explicitly, if O^{N} is a null class of N-dimensional manifolds, and \widetilde{O}^{N} its complement, then all four classes

$$
O_{H P}^{N} \cap O_{H^{2} X}^{N}, \quad O_{H P}^{N} \cap \widetilde{O}_{H^{2} X}^{N}, \quad \widetilde{O}_{H P}^{N} \cap O_{H^{2} X}^{N}, \quad \widetilde{O}_{H P}^{N} \cap \widetilde{O}_{H^{2} X}^{N}
$$

are nonempty for both $X=B$ and D, and for any N. This independence of N is of interest, as biharmonic degeneracy often fails to have this property. Typically, whereas the punctured Euclidean N-space is not an element of $O_{H^{2} B}^{N}$ for $N=2,3$, it does belong to it for all $N \geqq 4$ (SarioWang [6]).

Methodologically, we introduce in $\S 1$ a simple type of Riemannian manifold which, on account of its rectangular coordinates and nonconformal metric, is very versatile in classification problems.

1. We shall show

Theorem 1. $O_{H P}^{N} \cap \widetilde{O}_{H^{2} B}^{N} \neq \varnothing$ for every N.

Proof. Consider the N-manifold, $N \geqq 2$,

$$
T=\left\{0<x<\infty, 0 \leqq y \leqq 2 \pi, 0 \leqq z_{i} \leqq 2 \pi\right\},
$$

$i=1, \ldots, N-2$, with $y=0, y=2 \pi$ identified, and $z_{i}=0, z_{i}=2 \pi$ also identified for every i. Endow T with the metric

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 31B30.
 ${ }^{1}$ This work was sponsored by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-G181, University of California, Los Angeles.

