ANALYTICAL CIRCLE GROUP ACTIONS ON COMPACT COMPLEX MANIFOLDS ${ }^{1}$

BY SHAW MONG
Communicated by Glen E. Bredon, July 12, 1972

1. Introduction. Let M be a compact complex manifold (of m complex dimensions), and let G be a compact Lie group acting analytically on M. Then the Dolbeault complexes

$$
0 \rightarrow \Gamma(\stackrel{p, 0}{\wedge}(M)) \stackrel{\grave{\jmath}}{\rightarrow} \cdots \xrightarrow{\grave{\jmath}} \Gamma(\stackrel{p, q}{\wedge}(M)) \rightarrow \cdots \rightarrow 0
$$

$p=0, \ldots, m$, are G-elliptic complexes (for the definitions and following notions see $[\mathbf{1}],[2],[3])$ and their analytical indices $\chi\left(A^{p, *}, G\right)$ (or simply χ^{p}) are elements in the group representation ring $R(G)$. Following Hirzebruch [4], we have the $\chi_{y}\left(A^{p, *}, G\right)$ (or $\left.\chi_{y}\right)$-characteristic, $\sum_{p=0}^{m} \chi^{p}(-y)^{p}$ (here we take the alternating sum rather than the sum in [4]), which is an element in $R(G)[y]$.

Let \mathscr{C}_{k} be the category of (M, G) such that M has k fixed points under the analytical action of G, and let $\mathscr{C}=\bigcup_{k=0}^{\infty} \mathscr{C}_{k}$. In this note we study the category $\mathscr{C}_{k}, k=2,3$, for the case $G=S^{1}$. (Note: (i) $\mathscr{C}_{1}=\varnothing$ and (ii) $\chi_{y}=0$ for $\left.\left(M, S^{1}\right) \in \mathscr{C}_{0}.\right)$ Precisely the problem is: what are the necessary conditions for $\left(M, S^{1}\right) \in \mathscr{C}_{k}, k=2,3$, and if they do exist, what is their χ_{y} and the representations of S^{1} on the tangent planes over the fixed point set? The main tools for this study are the S^{1}-index theory and Atiyah-Bott fixed point formula. Only the statement of the result is given here. The details of the proof will appear elsewhere.

2. Main theorems.

Theorem 1. If $\left(M, S^{1}\right) \in \mathscr{C}$, then $\chi_{y} \in Z[y]$. Furthermore, if at a fixed point A, the representation of S^{1} on the tangent plane $T_{A} M$ is given by $T_{A} M(t)=t^{a_{1}}+\ldots+t^{a_{m}}$, where $t \in R\left(S^{1}\right)=Z\left[t, t^{-1}\right]$, then

$$
\begin{equation*}
\chi_{y}=\sum_{S^{1}(\boldsymbol{A})=A} \prod_{i=1}^{m}\left(\frac{1-y t^{a_{i}}}{1-t^{a_{i}}}\right) . \tag{*}
\end{equation*}
$$

Theorem 2. $\operatorname{If}\left(M, S^{1}\right) \in \mathscr{C}_{2}$, then either (i) $M=S^{2}$ or (ii)(complex) $\operatorname{dim} M$ $=3$.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 58G10, 57D25.
 Key words and phrases. G-index, Atiyah-Bott fixed point formula, χ_{y}-characteristic, analytic actions, representation rings.
 ${ }^{1}$ This research was supported by NSF grant GU3171.

