ANALYTICAL CIRCLE GROUP ACTIONS ON COMPACT COMPLEX MANIFOLDS¹

BY SHAW MONG

Communicated by Glen E. Bredon, July 12, 1972

1. Introduction. Let M be a compact complex manifold (of m complex dimensions), and let G be a compact Lie group acting analytically on M. Then the Dolbeault complexes

$$0 \to \Gamma \begin{pmatrix} p, 0 \\ \wedge \end{pmatrix} \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} \Gamma \begin{pmatrix} p, q \\ \wedge \end{pmatrix} \to \cdots \to 0,$$

 $p = 0, \ldots, m$, are G-elliptic complexes (for the definitions and following notions see [1], [2], [3]) and their analytical indices $\chi(A^{p,*}, G)$ (or simply χ^{p}) are elements in the group representation ring R(G). Following Hirzebruch [4], we have the $\chi_{y}(A^{p,*}, G)$ (or χ_{y})-characteristic, $\sum_{p=0}^{m} \chi^{p}(-y)^{p}$ (here we take the alternating sum rather than the sum in [4]), which is an element in R(G)[v].

Let \mathscr{C}_k be the category of (M, G) such that M has k fixed points under the analytical action of G, and let $\mathscr{C} = \bigcup_{k=0}^{\infty} \mathscr{C}_k$. In this note we study the category \mathscr{C}_k , k = 2, 3, for the case $G = S^1$. (Note: (i) $\mathscr{C}_1 = \emptyset$ and (ii) $\chi_{y} = 0$ for $(M, S^{1}) \in \mathscr{C}_{0}$.) Precisely the problem is: what are the necessary conditions for $(M, S^1) \in \mathscr{C}_k$, k = 2, 3, and if they do exist, what is their χ_{y} and the representations of S^{1} on the tangent planes over the fixed point set? The main tools for this study are the S^1 -index theory and Atiyah-Bott fixed point formula. Only the statement of the result is given here. The details of the proof will appear elsewhere.

2. Main theorems.

THEOREM 1. If $(M, S^1) \in \mathcal{C}$, then $\chi_y \in Z[y]$. Furthermore, if at a fixed point A, the representation of S^1 on the tangent plane T_AM is given by $T_A M(t) = t^{a_1} + \ldots + t^{a_m}$, where $t \in R(S^1) = Z[t, t^{-1}]$, then

(*)
$$\chi_{y} = \sum_{S^{1}(A)=A} \prod_{i=1}^{m} \left(\frac{1-yt^{a_{i}}}{1-t^{a_{i}}} \right)$$

THEOREM 2. If $(M, S^1) \in \mathscr{C}_2$, then either (i) $M = S^2$ or (ii) (complex) dim M = 3.

AMS (MOS) subject classifications (1970). Primary 58G10, 57D25.

Key words and phrases. G-index, Atiyah-Bott fixed point formula, χ_{v} -characteristic, analytic actions, representation rings. ¹ This research was supported by NSF grant GU3171.

Copyright © American Mathematical Society 1973