AN INVERSION FORMULA INVOLVING PARTITIONS

BY PETER DOUBILET
Communicated by Gian-Carlo Rota, July 25, 1972

In this note we outline a combinatorial proof of an inversion formula involving partitions of a number. This formula can be used to obtain the theory of symmetric group characters in a purely combinatorial way, as will be done in a forthcoming book, The combinatorics of the symmetric group, by the present author and Dr. G.-C. Rota.

The terminology we use is as follows. By a composition α of an integer n we mean a sequence $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$ of nonnegative integers whose sum is n. A partition of n is a composition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ with $\lambda_{1} \geqq \lambda_{2}$ $\geqq \cdots \geqq \lambda_{p}>0$. The notation $\lambda \vdash n$ means " λ is a partition of n ". We use the symbols α, β for compositions, λ, μ, ρ for partitions.

A Young diagram of shape λ is an array of dots, with λ_{1} dots in the first row, λ_{2} in the second row, etc., in which the first dots from the rows lie in a column, the second dots form a column, and so on. The conjugate partition $\tilde{\lambda}$ of λ is the shape obtained when the Young diagram of shape λ is transposed about its main diagonal, i.e., the rows of the transposed diagram are the columns of the original diagram. A generalized Young tableau (GYT) π of shape λ is an array of integers $q_{i j}(i=1,2, \ldots, p$, $j=1,2, \ldots, \lambda_{i}$) with $q_{i j}>0, q_{i, j+1} \geqq q_{i j}$ if $j<\lambda_{i}$, and $q_{i+1, j}>q_{i j}$ if $j \leqq \lambda_{i+1}$, i.e., an array of positive integers of shape λ which is increasing nonstrictly along the rows and increasing strictly down the columns. The type of a GYT π is the composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$ of n (where $\lambda \vdash n$), where α_{i} is the number of times the integer i appears in π.

If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ is a composition of n with $s \leqq n$, and $\tau \in S_{n}$ (the symmetric group on $\{1,2, \ldots, n\}$), then $\tau \cdot \alpha$ is the composition of n whose parts are $\alpha_{i}+\tau(i)-i, i=1,2, \ldots, n$ (where $\alpha_{i}=0$ if $i>s$), if all these parts are nonnegative, and $\tau \cdot \alpha$ is undefined otherwise. We also define $\tau * \lambda$ to be the partition of n whose parts are $\lambda_{i}+\tau(i)-i$ in nonincreasing order if all these parts are nonnegative, and $\tau * \lambda$ is undefined otherwise.

Our inversion formula can now be stated.
Theorem. Let f, g be mappings from $\{\lambda \mid \lambda \vdash n\}$ to some field F of characteristic 0 . Then

$$
f(\lambda)=\sum_{\tau \in S_{n}}(\operatorname{sign} \tau) g(\tau * \lambda) \leftrightarrow g(\lambda)=\sum_{\mu \vdash n} K_{\mu \lambda} f(\mu)
$$

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 05A17; Secondary 05B20.
 Key words and phrases. Composition, partition, conjugate partition, Young diagram, generalized Young tableau, partial ordering, incidence algebra.

