ON HOLOMORPHIC FAMILIES OF POINTED RIEMANN SURFACES

BY CLIFFORD J. EARLE ${ }^{1}$

Communicated by F. W. Gehring, June 26, 1972
According to a theorem of A. Grothendieck [4] the Teichmüller space of a closed Riemann surface of genus $p \geqq 2$ is the universal parameter space for holomorphic families of marked Riemann surfaces of genus p. In this note we offer a corresponding description for every finite-dimensional Teichmüller space $T(p, n)$ and discuss the universal families $\pi: V(p, n) \rightarrow T(p, n)$. Detailed proofs will be given elsewhere.

1. The space $T(p, n)$. Let X be the smooth $\left(C^{\infty}\right)$ oriented closed surface of genus $p \geqq 0$, and let x_{1}, x_{2}, \ldots be a sequence of distinct points on X. Set $X_{0}=X, X_{n}=X \backslash\left\{x_{1}, \ldots, x_{n}\right\}, n \geqq 1$. Let Diff ${ }^{+} X$ be the group of orientation preserving diffeomorphisms of X, with the C^{∞} topology. We define the subgroups
$\operatorname{Diff}^{+}(X, n)=\left\{f \in \operatorname{Diff}^{+} X ; f\left(X_{n}\right)=X_{n}\right\}$,

$$
G_{n}=\text { the path component of the identity in } \operatorname{Diff}^{+}(X, n) .
$$

Next we form the space M of smooth conformal structures ($=$ complex structures) on X, again with C^{∞} topology. Diff ${ }^{+} X$ acts on M from the right by pullback. If the inequality

$$
\begin{equation*}
2 p-2+n>0 \tag{1}
\end{equation*}
$$

holds, then the group G_{n} acts freely, continuously, and properly (see [3]) with local sections, and we have a principal G_{n}-fibre bundle. The base space M / G_{n} of this bundle is, by definition, the Teichmüller space $T(p, n)$. It is well known that $T(p, n)$ has a natural complex structure and can be imbedded in \boldsymbol{C}^{d} as a bounded open contractible domain of holomorphy $[\mathbf{2}], d=3 p-3+n$.
2. n-pointed families. Suppose the integers $p, n \geqq 0$ satisfy (1). An n pointed family (of closed Riemann surfaces of genus p) consists of a pair of complex manifolds V and B, a holomorphic map $\pi: V \rightarrow B$, and n holomorphic sections $s_{j}: B \rightarrow V$ such that
(i) π is a proper submersion,

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 32G15, 14H15.
 ${ }^{1}$ The author is grateful to the Institut Mittag-Leffler for financial support while this research was done.

