BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 79, Number 1, January 1973

TOTALLY GEODESIC FIBRE MAPS¹

BY MU-CHOU LIU Communicated by S. S. Chern, August 9, 1972

Let M be a Riemannian manifold and $\Pi: TM \to M$ be its tangent bundle. There exist two kinds of naturally induced metrics on TM, the Sasaki metric and the pseudo-Riemannian metric ([3], [4]). If TM is endowed with the Sasaki metric and M is compact, we have shown that TM is a complete Riemannian manifold which admits no negative curvature. In [4], Yano and Kobayashi determined the holonomy group of the pseudo-Riemannian connection on TM. A fibre map is said to be trivial if it collapses the whole fibre into a point.

Based on the results of Yano and Kobayashi, we prove the following

THEOREM 1. Suppose M and N are Riemannian manifolds. If $F:TM \rightarrow$ TN is a totally geodesic fibre preserving map, then the induced map $f: M \to N$ is totally geodesic. If for some $u \in TM$, Ker $F_{*, u}$ contains a nonvertical vector, then F is trivial.

By using the Morse theory and Cartan-Hadamard Theorem together with the above theorem, we prove the following

THEOREM 2. Suppose M is a Riemannian manifold, and suppose its Ricci curvature K satisfies $K(X, X) \ge (n - 1)/c^2$ for every unit vector X at every point of M, where c is a positive constant. If there exists a geodesic of length greater than Πc , and if N is a complete Riemannian manifold of negative curvature, then any fibre preserving totally geodesic map $F:TM \rightarrow$ TN is trivial.

COROLLARY. If $f: M \to N$ is a map such that the tangent map $f_*: TM \to COROLLARY.$ TN is totally geodesic, then f is a constant map.

A direct consequence of Theorem 2 is the following:

THEOREM 3. Suppose M is a compact Riemannian manifold with everywhere positive definite Ricci tensor. If N is a Riemannian manifold of negative curvature, then any fibre preserving totally geodesic map $F:TM \rightarrow T$ TN is trivial.

The proofs of these results will appear in [2].

AMS (MOS) subject classifications (1970). Primary 53B05, 53B15, 53C05.

Key words and phrases. Totally geodesic fibre map, induced pseudo-Riemannian connection, holonomy group, Ricci curvature. ¹ Work partially supported by NSF grant 24917.

Copyright © American Mathematical Society 1973