DIFFERENTIABLE ACTIONS OF S¹ AND S³ ON HOMOTOPY SPHERES

BY KAI WANG

Communicated by Glen E. Bredon, July 12, 1972

Introduction. The purpose of this note is to announce some results on free actions of S^1 and S^3 on homotopy spheres. In the following, most of the discussion of S^3 actions will be omitted since it is completely analogous to S¹ actions. Let S¹ act on $S^{2p-1} \times S^{2q-1}$ by g(x, y) = (gx, gy) for $g \in S^1$ and $(x, y) \in S^{2p-1} \times S^{2q-1}$. It is always assumed that $q \leq p$. This is a free action and let $K^{p+q,q}$ be the orbit space. Here is the motivation for this work. Let f be a diffeomorphism of $K^{p+q,q}$ which is homotopic to the identity. Let f be its covering which is an equivariant diffeomorphism of $S^{2p-1} \times S^{2q-1}$. The manifold $\Sigma(\bar{f}) = S^{2p-1} \times D^{2q} \cup_{\bar{f}} D^{2p} \times$ S^{2q-1} obtained by gluing along $S^{2p-1} \times S^{2q-1}$ via \bar{f} is a homotopy sphere. $\Sigma(\bar{f})$ supports a free S¹ action defined by g(x, y) = (gx, gy) where $g \in S^1$ and $(x, y) \in S^{2p-1} \times D^{2q}$ or $D^{2p} \times S^{2q-1}$. It is easy to check that this action depends only on the pseudo-isotopy class α of f and will be denoted by $(\Sigma(\alpha), S^1)$. Let $P(\alpha)$ be the orbit space. Note that $(\Sigma(\alpha), S^1)$ is a free S¹ action on homotopy (2p + 2q - 1)-sphere with standard characteristic (2q - 1)-sphere i.e. the induced action on which is linear. Let $A^{n,q}$ be the set of all free S^1 actions on homotopy (2n - 1)-spheres with standard characteristic (2q - 1)-spheres. For q = [(n + 1)/2], $A^n =$ $A^{n,q}$ is the set of all decomposable S^1 actions on homotopy (2n - 1)spheres. Similarly let B^n be the set of all decomposable S^3 actions on homotopy (4n - 1)-spheres (see [6]). For $x \in A^{n,q}$, let $s_{2k}(x)$ be the splitting invariants (see [5]). The main result is the following:

THEOREM. There is a natural group structure on A^n (respectively, B^n) which makes A^n (respectively, B^n) a finitely generated abelian group of which the torsion part consists of all tangential homotopy complex projective spaces (respectively, tangential homotopy quaternion projective spaces) and rank $A^n = [(n + 1)/4] - 1$ if n is odd or [(n + 1)/4] if n is even (respectively, [n/2] - 1). Furthermore, $s_{2k}: A^n \to L_{2k}(e)$ and $s_{4k}: B^n \to Z$ are homomorphisms.

REMARK. The computations of torsions of A^n or B^n are reduced to the computations of $[CP^{n-1}, F]$ or $[QP^{n-1}, F]$.

AMS (MOS) subject classifications (1970). Primary 57E30.

Key words and phrases. Free actions, splitting invariants, tangential homotopy complex projective spaces.