DIFFERENTIABLE ACTIONS OF S^{1} AND S^{3} ON HOMOTOPY SPHERES

BY KAI WANG
Communicated by Glen E. Bredon, July 12, 1972

Introduction. The purpose of this note is to announce some results on free actions of S^{1} and S^{3} on homotopy spheres. In the following, most of the discussion of S^{3} actions will be omitted since it is completely analogous to S^{1} actions. Let S^{1} act on $S^{2 p-1} \times S^{2 q-1}$ by $g(x, y)=(g x, g y)$ for $g \in S^{1}$ and $(x, y) \in S^{2 p-1} \times S^{2 q-1}$. It is always assumed that $q \leqq p$. This is a free action and let $K^{p+q, q}$ be the orbit space. Here is the motivation for this work. Let f be a diffeomorphism of $K^{p+q, q}$ which is homotopic to the identity. Let \bar{f} be its covering which is an equivariant diffeomorphism of $S^{2 p-1} \times S^{2 q-1}$. The manifold $\Sigma(\bar{f})=S^{2 p-1} \times D^{2 q} \cup_{f} D^{2 p} \times$ $S^{2 q-1}$ obtained by gluing along $S^{2 p-1} \times S^{2 q-1}$ via \bar{f} is a homotopy sphere. $\Sigma(\bar{f})$ supports a free S^{1} action defined by $g(x, y)=(g x, g y)$ where $g \in S^{1}$ and $(x, y) \in S^{2 p-1} \times D^{2 q}$ or $D^{2 p} \times S^{2 q-1}$. It is easy to check that this action depends only on the pseudo-isotopy class α of f and will be denoted by $\left(\Sigma(\alpha), S^{1}\right)$. Let $P(\alpha)$ be the orbit space. Note that $\left(\Sigma(\alpha), S^{1}\right)$ is a free S^{1} action on homotopy $(2 p+2 q-1)$-sphere with standard characteristic $(2 q-1)$-sphere i.e. the induced action on which is linear. Let $A^{n, q}$ be the set of all free S^{1} actions on homotopy $(2 n-1)$-spheres with standard characteristic $(2 q-1)$-spheres. For $q=[(n+1) / 2], A^{n}=$ $A^{n, q}$ is the set of all decomposable S^{1} actions on homotopy $(2 n-1)$ spheres. Similarly let B^{n} be the set of all decomposable S^{3} actions on homotopy $(4 n-1)$-spheres (see [6]). For $x \in A^{n, q}$, let $s_{2 k}(x)$ be the splitting invariants (see [5]). The main result is the following:

Theorem. There is a natural group structure on A^{n} (respectively, B^{n}) which makes A^{n} (respectively, B^{n}) a finitely generated abelian group of which the torsion part consists of all tangential homotopy complex projective spaces (respectively, tangential homotopy quaternion projective spaces) and rank $A^{n}=[(n+1) / 4]-1$ if n is odd or $[(n+1) / 4]$ if n is even (respectively, $[n / 2]-1)$. Furthermore, $s_{2 k}: A^{n} \rightarrow L_{2 k}(e)$ and $s_{4 k}: B^{n} \rightarrow Z$ are homomorphisms.

Remark. The computations of torsions of A^{n} or B^{n} are reduced to the computations of $\left[C P^{n-1}, F\right]$ or $\left[Q P^{n-1}, F\right]$.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 57E30.
 Key words and phrases. Free actions, splitting invariants, tangential homotopy complex projective spaces.

