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1. Introduction. In this note we consider the extension of the spectral 
mapping theorem ([2], [3]) to certain noncommuting systems of elements, 
notably the 'quasi-commuting' systems of McCoy [5]. Full proofs and more 
detail are to appear elsewhere [4]. 

2. Relative joint spectra. Suppose a = (al9 a2,..., a„) is a system of 
elements in a complex Banach algebra A, with identity 1 : then the joint 
spectrum of a with respect to A is ([2]; [3, Definition 1.1]) the set (i(a) 
= <r*Aint(a) of those systems s = (sl9 s 2 , . . . , sn) of complex numbers for 
which the system a — s = (al — sl9 a2 — s2,..., an — s„) generates a 
proper left, or proper right, ideal in A. The 'one-way' spectral mapping 
theorem ([2] ; [3, Theorem 3.2]) is the inclusion 

(2.1) fa(a) s af (al 

valid for an arbitrary system a e An of elements and an arbitrary system 
ƒ = ( / i , / 2 , . . . ,fm)'.An -> Am of 'polynomials' in several variables on A. 
Equality 

(2.2) of (a) - Ma) 

is attained [3, Corollary 3.3] if the system of polynomials has a 'left 
inverse' g: Am -• An for which g(f(a)) = a, or alternatively if the system 
of elements is commutative ([2] ; [3, Theorem 4.3]). This second case is 
our 'spectral mapping theorem', of which we here consider the extension. 

DEFINITION 1. The joint spectrum ofbeAm relative to a e An in A is the 
set 

(2.3) <7a=a(b) — {t G a(b):3s e a(a\ (s, t) e a(a, b)}. 

The idea is to offer a measurement of the failure of equality in (2.1); 
for example there is equality 

(2.4) cm=zm{a) = a{a) 
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