RELATIVELY INVARIANT SYSTEMS AND THE SPECTRAL MAPPING THEOREM

BY ROBIN HARTE

Communicated by Robert G. Bartle, July 27, 1972

1. Introduction. In this note we consider the extension of the spectral mapping theorem ([2], [3]) to certain noncommuting systems of elements, notably the 'quasi-commuting' systems of McCoy [5]. Full proofs and more detail are to appear elsewhere [4].

2. Relative joint spectra. Suppose $a = (a_1, a_2, ..., a_n)$ is a system of elements in a complex Banach algebra A, with identity 1: then the *joint* spectrum of a with respect to A is ([2]; [3, Definition 1.1]) the set $\sigma(a) = \sigma_A^{joint}(a)$ of those systems $s = (s_1, s_2, ..., s_n)$ of complex numbers for which the system $a - s = (a_1 - s_1, a_2 - s_2, ..., a_n - s_n)$ generates a proper left, or proper right, ideal in A. The 'one-way' spectral mapping theorem ([2]; [3, Theorem 3.2]) is the inclusion

(2.1)
$$f\sigma(a) \subseteq \sigma f(a),$$

valid for an arbitrary system $a \in A^n$ of elements and an arbitrary system $f = (f_1, f_2, \ldots, f_m): A^n \to A^m$ of 'polynomials' in several variables on A. Equality

(2.2)
$$\sigma f(a) = f\sigma(a)$$

is attained [3, Corollary 3.3] if the system of polynomials has a 'left inverse' $g: A^m \to A^n$ for which g(f(a)) = a, or alternatively if the system of elements is commutative ([2]; [3, Theorem 4.3]). This second case is our 'spectral mapping theorem', of which we here consider the extension.

DEFINITION 1. The joint spectrum of $b \in A^m$ relative to $a \in A^n$ in A is the set

(2.3)
$$\sigma_{a=a}(b) = \{t \in \sigma(b) : \exists s \in \sigma(a), (s, t) \in \sigma(a, b)\}.$$

The idea is to offer a measurement of the failure of equality in (2.1); for example there is equality

(2.4)
$$\sigma_{f(a)=f(a)}(a) = \sigma(a)$$

AMS (MOS) subject classifications (1970). Primary 47D99, 46H99; Secondary 47A10, 47A60.

Key words and phrases. Joint spectrum, spectral mapping theorem, quasicommuting system.

Copyright © American Mathematical Society 1973