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1. Introduction. The principal result of this paper is that if D is an 
invariant differential operator on a symmetric space X of the noncompact 
type then, for each function ƒ e C°°(X), the differential equation Du = ƒ 
has a solution u e C°°(X). This is proved by means of a Paley-Wiener 
type theorem for the Radon transform on X. As a consequence we also 
obtain a Paley-Wiener theorem for the Fourier transform on X, that is 
an intrinsic characterization of the Fourier transforms of the functions 
in Cf(X\ In [2], Eguchi and Okamoto characterized the Fourier trans
forms of the Schwartz space on X. Invoking in addition the division theorem 
of Hörmander [16] and Lojasiewicz [18] we obtain by the method of 
[11] the surjectivity of D on the space of tempered distributions on X. 

Finally, as a consequence of a structure theorem of Harish-Chandra 
[8] for the bi-invariant differential operators on a noncompact semisimple 
Lie group G, we obtain a local solvability theorem for each such operator. 

2. The range of invariant differential operators. Let I b e a symmetric 
space of the noncompact type, that is a coset space G/K where G is a 
connected, noncompact semisimple Lie group with finite center and K 
a maximal compact subgroup. Let D(X) denote the set of differential 
operators on X, invariant under G and let C°°(X) denote the set of all 
C00 functions on X and Cf{X) the set of/ e C°°(X) of compact support. 

THEOREM 2.1. Let D ± 0 in D(X). Then 

DC™{X) = C°°(X). 

As in Malgrange 's proof of an analogous theorem for constant coefficient 
operators on Rn ([3], [20]) our proof proceeds by proving that if V is a 
closed ball in X then 

/eQ°(X),supp(I>/) c V implies supp(/) <= V, 

supp denoting support. This is proved by means of Theorem 2.2 below 
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