THE COHOMOLOGY OF RESTRICTIONS OF THE $\bar{\partial}$ COMPLEX

BY RICARDO NIRENBERG¹ Communicated by Mary Ellen Rudin, July 21, 1972

The local problem for complex vector fields (see for example Kohn [3]) can be summarized as follows: We are given a family L_1, \ldots, L_m of vector fields on some neighborhood U of the origin in \mathbb{R}^n :

$$L_i = \sum a_{ij} \frac{\partial}{\partial x_j}; \quad i = 1, \dots, m,$$

where the a_{ij} are complex valued C^{∞} functions on U. We assume that this family is closed under Lie brackets, i.e.

$$[L_i, L_j] = \sum d_{ij}^k L_k; \qquad i, j = 1, \dots, m.$$

We then look at the equations

(1)
$$L_i(u) = f_i; \qquad i = 1, \ldots, m,$$

where the f_i are C^{∞} functions on U, and try to give conditions on the L_i and the f_i so that a solution u should exist on maybe a smaller neighborhood of 0. We might also ask about the regularity properties of the solution u.

If we further assume that the L_i are linearly independent at each point of U, we can consider them as a basis for the sections of a vector bundle \mathscr{L} on U, and we obtain a complex

$$C_0^{\infty}(V) \xrightarrow{D_0} \Gamma(\mathscr{L}^*, V) \xrightarrow{D_1} \Gamma(\mathscr{L}^* \land \mathscr{L}^*, V) \xrightarrow{D_2} \dots, \qquad V \subset U.$$

Now equation (1) becomes $D_0(u) = f$ (see [3]).

For example, if M is a C^{∞} submanifold of \mathbb{R}^n , and d is the exterior derivative operator, the solution of the local problem is given by the Poincaré lemma and similarly, if M is a complex manifold, the solutions for the operators ∂ or $\overline{\partial}$ is given by the Dolbeault-Grothendieck lemma. In these two cases if M is compact we know that the cohomology spaces $H^i(M)$ (i > 0) are finite dimensional. A more difficult example is obtained if we take the restriction of the $\overline{\partial}$ (or the ∂) operator to a C^{∞} real submanifold of a complex manifold (see [2], [3], [4] and [6]).

AMS (MOS) subject classifications (1969). Primary 3530, 3222.

¹ Partially supported by N.S.F. Grant SDGU3171 at the State University of New York at Albany.