A CHARACTERIZATION OF GROWTH IN LOCALLY COMPACT GROUPS

BY J. W. JENKINS ${ }^{1}$
Communicated by Calvin C. Moore, July 31, 1972

G will denote throughout a separable, connected, locally compact group. Fix a left Haar measure on G and for a measurable subset A of G, let $|A|_{G}$ denote the measure of A. The purpose of this note is to announce results concerning the asymptotic behavior of $\left|U^{n}\right|_{G}$ where U is a compact neighborhood of the identity e in G, and to indicate some of the applications these results have for various areas. The following definitions are required:

Definition 1. G has polynomial growth if there is a polynomial p such that for each compact neighborhood U of e, there is a constant $C(U)$ so that

$$
\left|U^{n}\right|_{G} \leqq C(U) p(n) \quad(n=1,2, \ldots)
$$

$\left(U^{n}=\left\{u_{1} u_{2}, \ldots, u_{n} \mid u_{i} \in U, 1 \leqq i \leqq n\right\}\right) . G$ has exponential growth if for each compact neighborhood U of e there is a $t>1$ such that

$$
\left|U^{n}\right|_{G} \geqq t^{n} \quad(n=1,2, \ldots) .
$$

Note that since G is connected, its "growth" will be determined by the behavior of $\left|U^{n}\right|_{G}$ for any one compact neighborhood U of e.

For $a, b \in G$, let $[a, b]$ denote the subsemigroup of G generated by a and b, i.e.,

$$
[a, b]=\left\{x_{1} x_{2}, \ldots, x_{n} \mid x_{i} \in\{a, b\}, 1 \leqq i \leqq n, n=1,2, \ldots\right\} .
$$

$[a, b]$ is said to be free if $a[a, b] \cap b[a, b]=\varnothing$. A subset S of G is uniformly discrete if there is a neighborhood U of e in G such that $s U \cap t U=\varnothing$ for $s, t \in S, s \neq t$.

Definition 2. G is type NF if there does not exist $a, b \in G$ such that $[a, b]$ is free and uniformly discrete.

Let H be a connected Lie group with Lie algebra \mathfrak{h}, and let $g \rightarrow \operatorname{Ad} g$ be the canonical adjoint representation of H on \mathfrak{h}. H is said to be type R if the eigenvalues of Adg are of absolute value one for each $g \in H$.

Since G is connected, there exists an arbitrarily small compact normal subgroup K of G such that G / K is a Lie group.

Definition 3. G is type R if there exists a compact normal subgroup K

[^0]
[^0]: AMS (MOS) subject classifications (1969). Primary 22.20, 22.50, 28.75.
 ${ }^{1}$ This research was partially supported by NSF Grants GP-28925 and GP-7952X3.

