CURVATURE MEASURES FOR PIECEWISE LINEAR MANIFOLDS¹

BY F. J. FLAHERTY

Communicated by S. S. Chern, May 30, 1972

Let K be a convex cell of dimension m in Euclidean n-space, R^n . The volume of the tubular neighborhood of radius ρ around K is given by a polynomial, in ρ ,

$$\sum_{p} \sum_{i} H^{p}(K_{p}^{i}) \frac{v_{n-m}}{v_{m-p}} \frac{\rho^{n-p}}{n-p} \int_{c_{p}^{i}} dS^{m-p-1},$$

where H^p is the p-dimensional Hausdorff measure in \mathbb{R}^n , dS^k is the volume element of the standard unit sphere in R^k , v_k is $H^{k-1}(S^{k-1})$, K_p^i is a face of dimension p, c_p^i is the outer normal angle determined by K_p^i , p varies from 0 to m, i varies from 1 to N_p = the number of faces of dimension p, and m < n.

From this formula we can define the *pth curvature measure* of K as follows. For any bounded Borel set $A \subset \mathbb{R}^n$,

$$\sigma_p(A) = \sum_i H^p(A \cap K_p^i) \frac{1}{v_{m-p}} \int_{c_p^i} dS^{m-p-1}.$$

In addition to being measures, the σ_p are invariant under the full Euclidean group of rigid motions in R^n and satisfy the following strong stability property.

THEOREM 1. Let L be a k-dimensional affine subspace of \mathbb{R}^n and $\xi(n, k)$ the volume element of the manifold E(n, k) of all k-dimensional affine subspaces in Rⁿ. Then

$$\int_{L\cap K\neq \emptyset} \sigma_j(L\cap K)\xi(n,k) = c_j\sigma_{n-k+j}(K),$$

where c_i is a constant depending on n, m, k.

Given a piecewise linear manifold K of dimension m, with boundary ∂K , piecewise linearly embedded in R^n one can also define the *p*th curvature measure of K. For any bounded Borel set $A \subset \mathbb{R}^n$,

AMS (MOS) subject classifications (1970). Primary 53C65, 49F20; Secondary 57C35. ¹ Research supported by the Sonderforschungsbereich at the University of Bonn.

Copyright © American Mathematical Society 1973