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Let K be a convex cell of dimension m in Euclidean n-space, Rn. The 
volume of the tubular neighborhood of radius p around K is given by a 
polynomial, in p, 
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where Hp is the p-dimensional Hausdorff measure in R", dSk is the volume 
element of the standard unit sphere in R\ vk is Hk~1(Sk~1\ Kp is a face 
of dimension p, cp is the outer normal angle determined by KP, p varies 
from 0 to m, i varies from 1 to Np = the number of faces of dimension p, 
and m < n. 

From this formula we can define the pth curvature measure of K as 
follows. For any bounded Borel set A c Rn, 

°P{A) = ZW(A n X j , ) — f d s - ' " 1 . 
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In addition to being measures, the ap are invariant under the full 
Euclidean group of rigid motions in JRW and satisfy the following strong 
stability property. 

THEOREM 1. Let L be a k-dimensional affine subspace of Rn and £(n, k) 
the volume element of the manifold E(n, k) of all k-dimensional affine sub-
spaces in R". Then 

1 <Tj(L n K)Ç(n, k) = c/rn_k+</(JK), 
LnK±<Z> 

where Cj is a constant depending on n, m, k. 

Given a piecewise linear manifold K of dimension m, with boundary 
dK, piecewise linearly embedded in Rn one can also define the pth curva­
ture measure of K. For any bounded Borel set A a Rn, 
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