THE MORSE LEMMA ON ARBITRARY BANACH SPACES

BY A. J. TROMBA

Communicated by Everett Pitcher, May 19, 1972

In [4], the author proved the Morse lemma on a real Banach space E which is the dual space of some space E_0 , as for example the Sobolev spaces $L_p^k, k \ge 0, 1 and the Hölder spaces <math>C^{k,\alpha}$ [5]. The author's first result extended earlier versions by Morse and Palais [2], [3]. In this note we state a theorem and sketch a proof of the Morse lemma for *any* Banach space.

Let $f: U \to R$ be at least C^3 (3 times differentiable) with $0 \in U$ a critical point of $f(Df_0 = 0)$. By the Taylor theorem we can write f as

$$f(x) = \frac{1}{2} \langle A_x x, x \rangle + f(0)$$

where $A: U \to L(E, E^*)$ {the linear maps from E to E^* } is C^1 and symmetric; i.e.,

$$\langle A_x u, v \rangle = \langle A_x v, u \rangle \quad \forall u, v \in E.$$

Here $\langle A_x u, v \rangle$ denotes the standard bilinear pairing of E and E*.

DEFINITION. 0 is said to be a nondegenerate critical point if

- (1) ∃a nbhd N ⊂ U of 0 and constants C₁ and C₂ so that ∀t, t', t₁, t₂ ∈ N.
 (a) A_t^{*} is injective (thus A_t is injective).
 - (b) $\|DA_t(h)(y)\| \leq C_1 \|h\| \cdot \|A_{t'}y\|$ for all $h, y \in E$.
 - (c) $\|DA_{t_1}(h)(y) DA_{t_2}(h)(y)\| \le C_2 \|h\| \cdot \|t_1 t_2\| \|A_{t'}y\|$ for all h,

 $y \in E$, where D denotes the Fréchet derivative of A with respect to the subscript variable.

(2)(a) For each $t \in N$, $\langle A_t x_n, y \rangle$ converges to zero for all y iff $\langle A_0 x_n, y \rangle$ converges to zero for all y.

(b) Given $t \in N$ if $\langle A_t x_n, y \rangle$ converges to zero for all $y \in E$ then $\langle DA_t(h)(x_n), y \rangle$ converges to zero of all $y \in E$ and $h \in E$.

It is not difficult to check that if E = H (Hilbert space) and $A_0: H \to H$ is an isomorphism (the standard definition of nondegeneracy) then conditions (1) and (2) are satisfied.

THEOREM (MORSE LEMMA). Let $f: U \to R$ be C^3 with $0 \in U$ a nondegenerate critical point of f. Then there exists a local diffeomorphism ϕ of a nbdh of 0 so that

$$f \circ \varphi(x) = \frac{1}{2}D^2 f_0(x, x) + f(0)$$

where $D^2 f_0$ is the second derivative of f at 0.

AMS (MOS) subject classifications (1970). Primary 49F15, 58E05.

Copyright © American Mathematical Society 1973