THE MORSE LEMMA ON ARBITRARY BANACH SPACES

BY A. J. TROMBA
Communicated by Everett Pitcher, May 19, 1972

In [4], the author proved the Morse lemma on a real Banach space E which is the dual space of some space E_{0}, as for example the Sobolev spaces $L_{p}^{k}, k \geqq 0,1<p<\infty$ and the Hölder spaces $C^{k, \alpha}[5]$. The author's first result extended earlier versions by Morse and Palais [2], [3]. In this note we state a theorem and sketch a proof of the Morse lemma for any Banach space.

Let $f: U \rightarrow R$ be at least C^{3} (3 times differentiable) with $0 \in U$ a critical point of $f\left(D f_{0}=0\right)$. By the Taylor theorem we can write f as

$$
f(x)=\frac{1}{2}\left\langle A_{x} x, x\right\rangle+f(0)
$$

where $A: U \rightarrow L\left(E, E^{*}\right)$ \{the linear maps from E to $\left.E^{*}\right\}$ is C^{1} and symmetric; i.e.,

$$
\left\langle A_{x} u, v\right\rangle=\left\langle A_{x} v, u\right\rangle \quad \forall u, v \in E .
$$

Here $\left\langle A_{x} u, v\right\rangle$ denotes the standard bilinear pairing of E and E^{*}.
Definition. 0 is said to be a nondegenerate critical point if
(1) \exists a nbhd $N \subset U$ of 0 and constants C_{1} and C_{2} so that $\forall t, t^{\prime}, t_{1}, t_{2} \in N$.
(a) A_{t}^{*} is injective (thus A_{t} is injective).
(b) $\left\|D A_{t}(h)(y)\right\| \leqq C_{1}\|h\| \cdot\left\|A_{t^{\prime}} y\right\|$ for all $h, y \in E$.
(c) $\left\|D A_{t_{1}}(h)(y)-D A_{t_{2}}(h)(y)\right\| \leqq C_{2}\|h\| \cdot\left\|t_{1}-t_{2}\right\|\left\|A_{t^{\prime}} y\right\|$ for all h, $y \in E$, where D denotes the Fréchet derivative of A with respect to the subscript variable.
(2)(a) For each $t \in N,\left\langle A_{t} x_{n}, y\right\rangle$ converges to zero for all y iff $\left\langle A_{0} x_{n}, y\right\rangle$ converges to zero for all y.
(b) Given $t \in N$ if $\left\langle A_{t} x_{n}, y\right\rangle$ converges to zero for all $y \in E$ then $\left\langle D A_{t}(h)\left(x_{n}\right), y\right\rangle$ converges to zero of all $y \in E$ and $h \in E$.

It is not difficult to check that if $E=H$ (Hilbert space) and $A_{0}: H \rightarrow H$ is an isomorphism (the standard definition of nondegeneracy) then conditions (1) and (2) are satisfied.

Theorem (Morse Lemma). Let $f: U \rightarrow R$ be C^{3} with $0 \in U$ a nondegenerate critical point of f. Then there exists a local diffeomorphism ϕ of a nbdh of 0 so that

$$
f \circ \varphi(x)=\frac{1}{2} D^{2} f_{0}(x, x)+f(0),
$$

where $D^{2} f_{0}$ is the second derivative of f at 0 .

