SUBMERSIONS FROM SPHERES

BY R. ESCOBALES, JR.

Communicated by S. S. Chern, August 9, 1972

1. Let M and B be Riemannian manifolds with M connected and complete. Assume π and $\bar{\pi}$ are Riemannian submersions from M onto B so that the fibers of these two submersions are totally geodesic. π and $\bar{\pi}$ are said to be *equivalent* provided there exists an isometry f of M which induces an isometry f of B so that the following diagram is commutative.

$$\begin{array}{ccc}
M & \xrightarrow{f} & M \\
\pi \downarrow & & \downarrow \overline{\pi} \\
B & \xrightarrow{\underline{f}} & B
\end{array}$$

We call the pair (f, f) a bundle isometry of π and $\bar{\pi}$. Now set $\pi = \bar{\pi}$. π is homogeneous if for every $p, q \in M$ there exists a bundle isometry (f, f) of π with f(p) = q.

In what follows S^m denotes the unit m sphere while $S^q(r)$ denotes a q sphere of radius r. $K_*(P_XY)$ denotes the curvature of a 2 plane in B spanned by X and Y.

For a Riemannian submersion $\pi: M \to B$, O'Neill [10] has defined a tensor A which we call the *integrability tensor* of π . If $A \equiv 0$, then the horizontal distribution (the distribution complementary to the fibers in the tangent space of M) is integrable. In general we will follow the notation of [10]. We now state our first result. Complete proofs are found in [4].

THEOREM 1.1. Let $\pi: S^m \to B$ be a Riemannian submersion with totally geodesic fibers. Assume $1 \le \dim fiber \le m-1$. Then as a fiber bundle π is one of the following types:

(a)
$$S^{1} \to S^{2n+1}$$
 (b) $S^{3} \to S^{4n+3}$ $\downarrow \pi$ $\downarrow \pi$ $\downarrow p$ $\downarrow p$

In cases (a) and (b) B is isometric to complex projective n-space and quaterionic n-space respectively with $1 \le K_*(P_X Y) \le 4$. In cases (c), (d) and (e) B is isometric to a sphere of curvature 4.

AMS (MOS) subject classifications (1970). Primary 53C20; Secondary 55F05.

Key words and phrases. Riemannian submersion, equivalent bundle isometry, integrability tensor.