ZEROS OF SUCCESSIVE DERIVATIVES OF ENTIRE FUNCTIONS

BY R. P. BOAS, JR. AND A. R. REDDY
Communicated by R. C. Buck, June 5, 1972

Let $f(z)$ be a transcendental entire function. If r_{k} is the radius of the largest disk with center at 0 in which $f^{(k)}(z)$ is zero-free, it is known that, when $f(z)$ is of positive finite order ρ and $\alpha>\rho$, there is an infinite increasing sequence of values of k such that $r_{k} \geqq k^{(1 / \alpha)-1}$ (Ålander [1] for $\rho<1$; stated by Pólya [4] for $\rho>1$ also; the first published proof for $\rho>1$ was given by Erdös and Rényi [3], where Ålander's result is misquoted as being for $\rho>1$). When $\rho=1$ and $f(z)$ is of exponential type τ it is known more precisely that $r_{k} \geqq c(\tau)$ (Takenaka [5]; for modern results see Buckholtz and Frank [2]).

We have established the existence of larger zero-free disks if they are no longer required to be centered at 0 . Our principal results are as follows.

Theorem 1. Iff (z) is an entire function at most of order 2, finite type, there is an arbitrarily large disk, somewhere in the plane, in which an infinity of $f^{(k)}(z)$ are zero-free.

This is a corollary of Ålander's theorem for $\rho<1$, but not for $1 \leqq \rho \leqq 2$.
The conclusion of Theorem 1 fails for entire functions of order greater than 2.

Theorem 2. If $\rho>2$, there is an entire function of order ρ such that, for some positive A, every disk, anywhere in the plane, of radius A contains a zero of every $f^{(k)}(z)$.

Theorem 3. If $f(z)$ is an entire function of finite order $\rho \geqq 2$, and $\alpha>\rho$, there is a point z_{0} such that, for an infinity of k, we have $f^{(k)}(z) \neq 0$ in $\left|z-z_{0}\right|<k^{(1 / \alpha)-1 / 2}$.

Theorem 3 shows that when we do not require the concentric zero-free disks to be centered at a prescribed point, they can be appreciably larger than in Pólya's theorem.

Theorem 4. If $f(z)$ is an entire function, for every (arbitrarily large) $c>0$, there is $a z_{0}$ such that $f^{(k)}(z) \neq 0$ in $\left|z-z_{0}\right|<c k^{-1 / 2}$ for an infinity of k.

Theorem 5. If $f(z)$ is analytic in $|z|<R$, there are a (possibly small) $c>0$ and a point z_{0} in $|z|<R$ such that $f^{(k)}(z) \neq 0$ in $\left|z-z_{0}\right|<c k^{-1 / 2}$ for an infinity of k.

AMS (MOS) subject classifications (1970). Primary 30A64, 30A66; Secondary 30A08.

