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I. Introduction. Although there have been a number of attempts [3] to 
define operator classes in Banach space whose properties are analogous 
to the classical trace class operators of Hubert space [1], [2] it is generally 
agreed that a satisfactory definition has yet to be achieved [3]. The purpose 
of the present note is to introduce a new approach to the problem wherein 
operator widths [2], [4] in Banach space replace the eigenvalues of the 
Hubert space formulation ; the viability of the approach being illustrated 
by the formulation of a number of sufficient conditions for an operator to 
have the finite approximation property in terms of its widths. Moreover, 
unlike the previous approaches [3] the trace class operators defined via 
operator widths are representation independent and coincide exactly with 
the classical definitions in Hilbert space. 

II. Definitions and results. In the sequel X is a Banach space normed by 
||-||, B is the unit ball in X and 5£n is the set of n-dimensional subspaces of B. 
The nth width, dn{A\ of an operator A on X is defined [4] by 

(1) dn(A) = inf sup inf||^w — v\\. 
Le&n ueB veL 

Classically, Kolmogorov [4] defined the nth width of a set to be a measure 
of the degree to which the set could be approximated by n-dimensional 
subspaces, the definition of equation (1) being that of Kolmogorov 
applied to A(B). 

Some remarks concerning the sequence {dn{A)} are as follows : 
(a) d0(A)=\\A\\; 
(b) {dn(A)} is a nonincreasing sequence and dn(A) -> 0 iff A is a compact 

operator ; 
(c) (see for example [2]) for X a Hilbert space and A a compact linear 

operator on X, set sn(A) = K((A*A)1/2) = the nth eigenvalue of (A*A)1/2 

(n = 1,2,...) (these are called the s numbers or characteristic numbers of 
A). Then dn(A) = sn+1(A) (n = °> 1,2,...). A is an Hilbert-Schmidt or 
nuclear operator if the sequence {s„(,4)} is an l2 or lx sequence. 
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