TRANSVERSALITY STRUCTURES AND P.L. STRUCTURES ON SPHERICAL FIBRATIONS

BY NORMAN LEVITT AND JOHN W. MORGAN

Communicated by William Browder, May 18, 1972

The first author in [L] introduced the notion of "Poincare transversality" for an N-dimensional spherical fiber space, $\pi: \xi^{N} \rightarrow X$. If $T\left(\xi^{N}\right)$ is the Thom space of ξ^{N}, then we consider $T\left(\xi^{N}\right)=M_{\xi} \cup c(S(\xi))$ where M_{ξ} is the mapping cylinder of π and $S(\xi)$ is the total space of ξ^{N}. A map $f: \Delta^{N+i} \rightarrow T\left(\xi^{N}\right)$ is Poincaré transversal if f is p.l. transversal to $S(\xi) \subset T(\xi)$ with $\left(f^{-1}\left(M_{\xi}\right), f^{-1}(S(\xi))\right)$ a codimension 0 submanifold of Δ^{N+i} with the inclusion $f^{-1}(S(\xi)) \subset f^{-1}\left(M_{\xi}\right)$ the spherical fibration induced by f over $f^{-1}\left(M_{\xi}\right)$. This implies $f^{-1}\left(M_{\xi}\right)$ is a Poincaré duality space, (P.D. space), of dimension i with boundary $f^{-1}\left(M_{\xi}\right) \cap \partial \Delta^{i+N}$, and that $\left(f^{-1}\left(M_{\xi}\right), f^{-1}\left(S_{\xi}\right)\right)$ is its normal tube.

A p.l. manifold M^{j} mapping by $f: M^{j} \rightarrow T\left(\xi^{N}\right)$ is Poincaré transversal to ξ^{N} if and only if $f \mid$ (any simplex) is. If f is Poincare transversal then $f^{-1}\left(M_{\xi}\right)$ is a P.D. space with boundary $f^{-1}\left(M_{\xi}\right) \cap \partial M$ and of dimension $j-N$. One of the main results of [L] is to develop a theory to study the problem of when a map $f: M^{j} \rightarrow T\left(\xi^{N}\right)$ may be shifted to be Poincaré transversal. To do this one introduces the space $W\left(\xi^{N}\right)$, of Poincaré transversal maps of $\Delta^{i} \rightarrow T\left(\xi^{N}\right)$ for all i. In [L] and [J] it is proved that if $F_{\xi^{N}}$ denotes the homotopy theoretic fiber of $W\left(\xi^{N}\right) \rightarrow T\left(\xi^{N}\right)$, then $\pi_{i}\left(F_{\xi^{N}}\right) \cong \pi_{i-N}(G / P L)$ for $i-N \neq 1,2$, or 3. In fact a map of fiber spaces $\xi^{N} \rightarrow \zeta^{N}$ induces $F_{\xi^{N}} \rightarrow F_{\zeta^{N}}$ and this map is an isomorphism on π_{i} for $i-N \neq 1,2$, or 3 . Also if $f: M^{j} \rightarrow T\left(\xi^{N}\right)$, then homotopying f until it is Poincaré transversal is equivalent to lifting f up to homotopy to $W\left(\xi^{N}\right)$. In this announcement we shall describe further results in this theory.

