COBORDISM OF U(n)-ACTIONS

BY CONNOR LAZAROV AND ARTHUR WASSERMAN¹

Communicated by Michael Atiyah, April 14, 1972

0. Introduction. Let G be a compact Lie group acting on a C^{∞} manifold. A G invariant stable complex structure on M is a complex structure J on $T(M) \oplus \varepsilon^r$ (where ε^r is a trivial bundle) such that for each g in G, dg \oplus id commutes with J. We will be concerned with the case where G = U(n)and the action is free or regular. We will study the resulting bordism theories.

DEFINITION. Let M be a compact U(n) manifold. M is called a regular U(n) manifold if

1. Every isotropy group is conjugate to U(k) for some $0 \leq k \leq n$.

2. For some r, $T(M) \oplus \varepsilon^r$ has a U(n) invariant complex structure J such that the representation of the isotropy group $U(n)_r$ at $(T(M) \oplus \varepsilon')_r$ is equivalent to a sum of copies of the standard complex representation of $U(n)_x$ plus a trivial complex representation. (Remark. If $U(n)_x$ $= g^{-1}U(k)g$, then $U(n)_x$ acts in the obvious way on $g^{-1}C^k \subset C^n$ and this is the standard representation.)

We define homotopy and equivalence classes of such structures analogously to [2]. The resulting bordism theory is denoted by $\Omega U(n)_{*}$. We denote the bordism theory of free U(n)-actions by $\Omega_*^{(n)}$. The main results are summarized in the following theorem.

THEOREM. $\Omega_*^{(n)}$ and $\Omega U(n)_*$ are free MU_* modules. Any connected regular U(n) manifold on which U(n) acts nontrivially is bordant in $\Omega U(n)_{*}$ to a regular U(n) manifold in which every isotropy group is conjugate to U(1) or U(0).

Warning. $\Omega_*^{(n)}$ is not obviously $MU_*(BU(n))$.

1. Relation between $\Omega_*^{(n)}$ and $\Omega U(n)_*$. As in [3], [7] we construct a long exact sequence $\rightarrow D^{*,i} \rightarrow D^{*,i-1} \rightarrow E^{*,i-1} \rightarrow D^{*,i} \rightarrow \cdots$ and a resulting exact couple and a spectral sequence. Then E^{∞} is associated to a filtration of $\Omega U(n)_{*}$. For $k \neq n$, $E_{*,k}^{1}$ is the bordism group of pairs (E, M) where E is a complex U(n) vector bundle over the regular U(n) manifold M such that every point in M has isotropy group conjugate to U(n - k) and the representation of $U(n)_x$ on E_x is a sum of copies of the standard complex representation of $U(n)_x$. The pair (E, M) is completely determined by the $U(n-k) \times U(k)$ manifold M_0 , the points in M with isotropy group

AMS 1970 subject classifications. Primary 57D85; Secondary 57D90, 57E15. ¹ Research partially supported by National Science Foundation grants GP-12639 and GP-7952X3.

Copyright @ American Mathematical Society 1972