THE NUMBER OF UNLABELLED GRAPHS WITH MANY NODES AND EDGES

BY E. M. WRIGHT¹

Communicated by G.-C. Rota, May 1, 1972

T = T(n, q) is the number of graphs with n unlabelled nodes and q undirected edges, each pair of different nodes being not joined or joined by a single edge. We write N = n(n - 1)/2, so that a graph contains at most N edges. We give here asymptotic approximations to T for all large n and q. Since T(n, q) = T(n, N - q), we suppose $q \leq N/2$ throughout.

In what follows, A, C and η denote numbers, not always the same at each occurrence. Of these, A and C are positive and independent of n and q. A number A denotes any positive number that we may choose, while C is a suitable positive number which may depend on any Apresent or implied. Unless we specifically state the contrary, all our statements carry the implied condition that $q \ge C$ and $n \ge C$. The O-notation refers to the passage of n and q to infinity and the constant implied is a C. An η is any number which is $O(q^{-C})$ for some C.

We write

 $B(h,k) = \frac{h!}{\{k!(h-k)!\}}, \qquad \Lambda_n = \Lambda(n,q) = B\{n(n-1)/2, q\}/n!,$ $\mu = (2q/n) - \log n, \qquad \qquad J(v) = v^{1/2} \{2(1 + \log v)\}^{-1/2},$ $K(v) = 2\pi^{1/2}e^{-1}J(v),$ $\delta = \mu J(n),$ Erf $x = 2\pi^{-1/2} \int_{0}^{x} e^{-t^2} dt$, $\lambda(x) = (1 + \text{Erf } x)/2$.

A table of Erf x is given in [1]. We write V to denote the greatest integer such that $V \log V \leq 2q$.

Polya [2] proved that $T \sim \Lambda_n$ as $n, q \to \infty$, provided that (N/2) – $q \leq An$, and Oberschelp [5] weakened the condition to $(N/2) - q \leq Cn^{3/2}$. In [8], I proved the following theorem.

THEOREM 1. The necessary and sufficient condition that $T \sim \Lambda_n$ is that $\mu \to \infty$ as $n \to \infty$. If this condition is satisfied, then $T = \Lambda_n \{1 + O(e^{-C\mu})\}$.

Korsunov [4] stated the following theorem without proof.

AMS 1969 subject classifications. Primary 0565. Key words and phrases. Unlabelled graphs, asymptotic enumeration.

¹ The research reported herein was sponsored in part by the United States Government.