THE NUMBER OF UNLABELLED GRAPHS WITH MANY NODES AND EDGES

BY E. M. WRIGHT ${ }^{1}$

Communicated by G.-C. Rota, May 1, 1972
$T=T(n, q)$ is the number of graphs with n unlabelled nodes and q undirected edges, each pair of different nodes being not joined or joined by a single edge. We write $N=n(n-1) / 2$, so that a graph contains at most N edges. We give here asymptotic approximations to T for all large n and q. Since $T(n, q)=T(n, N-q)$, we suppose $q \leqq N / 2$ throughout.

In what follows, A, C and η denote numbers, not always the same at each occurrence. Of these, A and C are positive and independent of n and q. A number A denotes any positive number that we may choose, while C is a suitable positive number which may depend on any A present or implied. Unless we specifically state the contrary, all our statements carry the implied condition that $q>C$ and $n>C$. The O-notation refers to the passage of n and q to infinity and the constant implied is a C. An η is any number which is $O\left(q^{-C}\right)$ for some C.

We write

$$
\begin{array}{ll}
B(h, k)=h!/\{k!(h-k)!\}, & \Lambda_{n}=\Lambda(n, q)=B\{n(n-1) / 2, q\} / n!, \\
\mu=(2 q / n)-\log n, & J(v)=v^{1 / 2}\{2(1+\log v)\}^{-1 / 2}, \\
\delta=\mu J(n), & K(v)=2 \pi^{1 / 2} e^{-1} J(v), \\
\text { Erf } x=2 \pi^{-1 / 2} \int_{0}^{x} e^{-t^{2}} d t, & \lambda(x)=(1+\operatorname{Erf} x) / 2 .
\end{array}
$$

A table of $\operatorname{Erf} x$ is given in [1]. We write V to denote the greatest integer such that $V \log V \leqq 2 q$.

Polya [2] proved that $T \sim \Lambda_{n}$ as $n, q \rightarrow \infty$, provided that ($N / 2$) $q<A n$, and Oberschelp [5] weakened the condition to ($N / 2$) - $q<C^{3 / 2}$, In [8], I proved the following theorem.

Theorem 1. The necessary and sufficient condition that $T \sim \Lambda_{n}$ is that $\mu \rightarrow \infty$ as $n \rightarrow \infty$. If this condition is satisfied, then $T=\Lambda_{n}\left\{1+O\left(e^{-C \mu}\right)\right\}$.

Korsunov [4] stated the following theorem without proof.
AMS 1969 subject classifications. Primary 0565.
Key words and phrases. Unlabelled graphs, asymptotic enumeration.
${ }^{1}$ The research reported herein was sponsored in part by the United States Government.

