INFINITE-DIMENSIONAL METHODS IN FINITE-DIMENSIONAL **GEOMETRIC TOPOLOGY**

BY ROSS GEOGHEGAN¹ AND R. RICHARD SUMMERHILL

Communicated by R. D. Anderson, May 22, 1972

1. Introduction.² We use the methods of infinite-dimensional topology to derive new information about the topology of euclidean spaces and manifolds. The idea is to partition euclidean *n*-space E^n into a *k*-dimensional pseudo-boundary $(0 \le k < n)$ and an (n - k - 1)-dimensional pseudo-interior, and to deduce negligibility theorems analogous to those known for the pseudo-boundary and the pseudo-interior (denoted by s) of the Hilbert cube I^{ω} . Since s is homeomorphic to Hilbert space l_2 , there is a sense in which we are giving the correct finite-dimensional analogues of l_2 (see §5).

DEFINITION. A subset X of a metric space Y (with metric d) is strongly negligible in Y if, for each open set U in Y and each map $\varepsilon: U \to R^+$, there is a homeomorphism $h: Y \to Y - (X \cap U)$ fixing Y - U such that $d(x, h(x)) < \varepsilon(x)$ for all $x \in U$. This is a topological property independent of d.

THEOREM 1.1. E^n is the union of two disjoint dense subsets B^k and P^{n-k-1} such that (1) if $n \leq 2k + 1$, any σ -compact subset of P^{n-k-1} is strongly negligible in P^{n-k-1} , and (2) if $n \geq 2k + 1$, any compact subset of B^k is strongly negligible in B^k . If n = 2k + 1, any k-dimensional compactum can be embedded in B^k or in P^k .

NOTATION. Superscripts on spaces, e.g., B^k , P^{n-k-1} , indicate dimension. We call B^k of Theorem 1.1 the universal k-dimensional pseudo-boundary of E^n . It is built out of Menger universal compacta [13], [17]. (See §3.) P^{n-k-1} of Theorem 1.1 is the corresponding pseudo-interior.

Another kind of k-dimensional pseudo-boundary in E^n can be built out of polyhedra as follows.

Let J_0 be a rectilinear PL triangulation of E^n , all *n*-simplexes having the same diameter. Let J_i $(i \ge 1)$ be the *i*th barycentric subdivision of J_0 , its k-skeleton being J_i^k . The polyhedral k-dimensional pseudo-boundary of E^n is $\tilde{B}_n^k = \bigcup_{i=1}^{\infty} |J_i^k|$. The corresponding pseudo-interior is $\tilde{P}_n^{n-k-1} =$ $\tilde{E}^n - \tilde{B}^k_n$.

AMS 1970 subject classifications. Primary 57A15; Secondary 57A20. ¹ Supported by NSF grant GP-7952X3. ² This is a summary of a paper entitled Pseudo-boundaries and pseudo-interiors in euclidean spaces and topological manifolds.