THREE CHARACTERISTIC CLASSES MEASURING THE OBSTRUCTION TO PL LOCAL UNKNOTEDNESS

BY LOWELL EDWIN JONES

Communicated by S. S. Chern, May 12, 1972

 $(M, \partial M) \subset (N, \partial N)$ denotes a PL embedding of oriented PL manifolds, with $M \cap \partial N = \partial M$, $\operatorname{codim}_N(M) = 2$. Two such embeddings i_0, i_1 are concordant if there exists a PL embedding $(M \times I, \partial M \times I, M \times \partial I) \subset$ $(N \times I, \partial N \times I, N \times \partial I)$ restricting to i_0, i_1 on $M \times 0, M \times 1$, respectively. The embedding $(M, \partial M) \subset (N, \partial N)$ is locally flat if every point $x \in M$ has a PL ball D^n for its neighborhood such that $D^n \cap M \subset D^n$ is PL conjugate to the standard embedding $D^{n-2} \subset D^n$.

This is the problem considered here: When is the embedding $(M, \partial M) \subset (N, \partial N)$ concordant to a locally flat embedding?

Let G_k denote the (geometric) group of concordism classes of locally flat knots having dimension k. Stabilizing, and factoring out by the periodicity isomorphism, we get a Z_4 -graded group, which is denoted (somewhat akwardly) as G_* . $K_{F/PL}^*$, $K_{F/TOP}^*$ denote the cohomology theories having F/PL, $\overline{F/TOP}$ for their zeroth loop spectrum [11].

THEOREM. There are characteristic classes $\theta(M, N) \in H^2(M, G_3)$, $\beta(M, N) \in K^0_{F/PL}(M)$, $\gamma(M, N) \in K^0_{F/TOP}(M, G_{*+1})$ satisfying the following:

(a) These classes depend only on the concordism class of the embedding $(M, \partial M) \subset (N, \partial N)$.

(b) They vanish if and only if $(M, \partial M) \subset (N, \partial N)$ is concordant to a locally flat embedding.

Construction of θ , β , γ .

 θ . For each simplex $\Delta^k \in M$ there are cells $D_M(\Delta^k)$, $D_N(\Delta^k)$ —the dual cells to Δ^k in M, N, respectively. These satisfy $D_N(\Delta^k) \cap M = D_M(\Delta^k)$; $D_m(\Delta^k) \subset D_N(\Delta^k)$ is a codimension 2 embedding of discs. Try to concord $(M, \partial M) \subset (N, \partial N)$ to a locally flat embedding by inductively doing so for the embeddings $(D_M(\Delta^k) \subset D_N(\Delta^k))$. The first possible nonvanishing obstruction appears as a cocycle defined on the 2-dimensional dual cells in M. This represents $\theta(M, N) \in H^2(M, G_3)$ [10].

 γ . Let (R, R_{∂}) denote a regular neighborhood for $(M, \partial M) \subset (N, \partial N)$. \dot{R} denotes its topological boundary in N. There is a linear bundle τ defined over M, having D^2 for fiber, and an integral-homology equivalence

Copyright © American Mathematical Society 1972

AMS 1970 subject classifications. Primary 57D20; Secondary 57C50.