RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited. Manuscripts more than eight typewritten double spaced pages long will not be considered as acceptable. All research announcements are communicated by members of the Council of the American Mathematical Society. An author should send his paper directly to a Council member for consideration as a research announcement. A list of members of the Council for 1972 is given at the end of this issue.

CONVEX MATRIX EQUATIONS

BY J. S. MONTAGUE AND R. J. PLEMMONS¹ Communicated by Eugene Isaacson, May 15, 1972

1. Introduction. Let Δ_n denote the set of all $n \times n$ complex matrices A whose spectral norm ||A|| is at most one. Then Δ_n forms a convex topological semigroup under matrix multiplication ([6], [7]). The subsemigroup Σ_n of Δ_n , consisting of all real nonnegative matrices in Δ_n , is the set of all $n \times n$ doubly substochastic matrices; that is, real nonnegative matrices whose row and column sums are at most one. The subsemigroup of Σ_n consisting of all $n \times n$ doubly stochastic matrices will be denoted by Ω_n .

Geometrically, Ω_n is the convex hull of the group of all $n \times n$ permutation matrices ([1], [8]), while Σ_n is the convex hull of the semigroup of all $n \times n$ subpermutation matrices [9]. The following theorem establishes a similar result for Δ_n .

THEOREM 1. Δ_n is the convex hull of the set of all $n \times n$ unitary matrices.

The proof of the theorem can be obtained by establishing that the unitary matrices form the set of extreme points of Δ_n . The result then follows by the Krein-Milman theorem. The complete proof will appear elsewhere [10]. Another proof of this result is given in [15].

Several authors have considered matrix equations involving doubly stochastic matrices. In particular, S. Sherman [14] and S. Schreiber [13] have considered the solvability of the equation AX = B and D. J. Hartfiel [5] has considered the solvability of the equation AXB = X, where A, B, and X are doubly stochastic. The main purpose of this note is to consider the system of matrix equations

$$AX = B \quad \text{and} \quad BY = A,$$

AMS 1970 subject classifications. Primary 15A24, 15A30; Secondary 20M10, 52A40. Key words and phrases. Convex hull, convex topological semigroup, doubly stochastic matrix, Green's relations, Moore-Penrose generalized inverse, regularity.

¹ Research supported in part by the National Science Foundation grant GP-15943.

Copyright © American Mathematical Society 1972