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This announcement is a continuation of Greene-Wu [1]; we shall 
present additional theorems relating curvature to function theory on 
noncompact Kâhler manifolds. The first theorem improves Theorem 3 
of [1]. 

THEOREM 1. Let M be a complete simply connected Kâhler manifold 
with nonpositive sectional curvature such that, for some 0 e M, 

\sectional curvature (p)\ ^ C(d(0,p))~2~8 

for some positive constants C and s, where d is the distance function 
associated with the Kâhler metric; then M admits no bounded holomorphic 
functions. 

This theorem is false if e ^ 0. Indeed, on the unit disc, the Kâhler 
metric (1 — zz)~ndzdz (where n is any integer ^ 3) is complete and its 
curvature function K satisfies K < 0 and \K(z)\ S C(d(0, z))~2. (0 = origin 
ofC.) 

The next theorem and its corollary provide information about the 
absence of holomorphic p-forms (p ^ 1) when the manifold is positively 
curved. For compact M, the result was known (Kobayashi-Wu [6]). 

THEOREM 2. Let M be a complete Kâhler manifold of positive scalar 
curvature; then M possesses no holomorphic n-form in Z? (n = dim M). 
If the eigenvalues rl9 ...,rn of the Ricci tensor satisfy 

rt + ... + rt > 0 for all ii < ... < ip9 

then M admits no holomorphic p-form in L2. 

COROLLARY.(A) If M is a complete Kâhler manifold with positive Ricci 
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