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Let C be the complex plane, Ce the extended plane, A(a, r) the open 
disk of radius r centered at a, R a Riemann surface and HP(R) Hardy 
class Hp oîR (cf. [5, pp. 9-12]). A now classical theorem of Beurling states 
that the closed subspaces of H2(A(0,1)) invariant under multiplication 
by z are exactly the subspaces F of the form V= I • i/2(A(0, l)\ where I 
is an inner function determined up to multiplication by a constant of 
modulus 1 by V\\\ Analogous theorems hold for HP(R\ where R is the 
interior of a compact bordered Riemann surface and 1 ^ p ^ oo. (If 
p = oo, the proper topology for F to be closed in is either the ƒ? or bounded 
weak-star topology of Buck [2], or else the weak-star topology.) (Cf. 
[3], [4], [10], [13].) We have generalized these theorems to HP(R), 
where R is a certain type of infinitely connected plane domain. 

Before stating our generalization, we must make several definitions. 
A locally analytic modulus, or /.a.m., is a real valued function g on R 
such that for each simply connected open subset U of R, there exists ƒ 
analytic on U such that g = \f\. The Lam g is inner if log g = G + S, 
where G is a sum of Green's functions and S is a singular harmonic function 
in the sense of Parreau ([8], cf. also [5, p. 7]). If R = A(0,1), an analytic 
function I is inner in the usual sense [6, pp. 61-68] if and only if the 
Lam |/| is inner. 

R is a Blaschke region in case R £ C and R is of the form Ce ~ 
UM(0:0 S i < oo} (or, Ce ~[) {A(î):0 S i ^ »}) where the A(i) are 
pairwise disjoint continua such that Ce ~ A(i) is connected for each I 
In addition, there must exist an integer n such that the A(i) cluster only 
on (J {A(i):0 ^ i ^ n}, and a sequence a(i)eA(i\ i ^ n + 1, such that 
YjiG(a(i\z):n + 1 ^ i < oo) < oo. Here G(a,z) is the Green's function 
for Ce ~ (J {A(i):0 ^ i ^n}. Voichick first studied this class of plane 
regions [13]. We call them Blaschke regions because the prototype of 
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