ESTIMATES FOR THE SZEGÖ AND POISSON KERNELS OF SUFFICIENTLY ROUNDED TUBE DOMAINS

BY LAWRENCE J. DICKSON ${ }^{1}$
Communicated by Alberto Calderón, February 28, 1972

In this paper we obtain estimates for the decrease at infinity of the Szegö and Poisson kernels, $S_{\Gamma}(X, Y)=S_{\Gamma ; X}(Y)$ and $P_{\Gamma}(X, Y)=P_{\Gamma ; X}(Y)$ $=\left|S_{\Gamma}(X, Y)\right|^{2}\left\|S_{\Gamma ; X}\right\|_{2}^{-2}$, associated with proper cones $\Gamma \subset R^{n}$ which are sufficiently smooth and satisfy certain curvature conditions. These estimates verify, for these cases, the conjecture of Stein (see [2], [4]) that the Poisson integral of an L^{1} function converges restrictedly almost everywhere to that function on the distinguished boundary of a tube domain (Corollary IA). These and other results about the Poisson kernel will be elaborated on in [1].

Let Γ be a proper cone of $\boldsymbol{R}^{\boldsymbol{n}}$ (that is, a nonempty, open, convex cone whose closure contains no whole line), Γ^{*} its dual cone

$$
\begin{equation*}
\Gamma^{*}=\left\{Y \in R^{n}:(X, Y)>0 \forall X \in \bar{\Gamma}-\{0\}\right\} \tag{1}
\end{equation*}
$$

which is also proper, and $\Omega=\Omega_{\Gamma}$ its tube domain

$$
\begin{equation*}
\Omega=\Gamma \times i \boldsymbol{R}^{n}=\left\{Z \in C^{n}: \operatorname{Re}(Z) \in \Gamma\right\} \tag{2}
\end{equation*}
$$

For $X \in \Gamma$ define the nonempty compact section $C_{\Gamma^{*} ; X}=C_{X}^{*}$ of $\bar{\Gamma}^{*}$ as follows:

$$
\begin{equation*}
C_{X}^{*}=\left\{Y \in \bar{\Gamma}^{*}:(X, Y)=1\right\} \subset\{Y:(X, Y)=1\} \approx R^{n-1} \tag{3}
\end{equation*}
$$

and similarly for $C_{\Gamma ; Y}=C_{Y}, Y \in \Gamma^{*}$.
We will say Γ is $C^{N}, N \geqq 0$, if ∂C_{Y} is C^{N}. Γ will be said to satisfy the "flat curvature condition" if for some proper circular cone Δ of \boldsymbol{R}^{n} and every $P \in \partial \Gamma$ there is a rotation ρ_{P} of R^{n} such that $P \in \partial\left(\rho_{P} \Delta\right)$ and $\rho_{P} \Delta \subset \Gamma$. The dual condition, the "sharp curvature condition," is stated similarly but reverses the last inclusion. We exclude, in our theorems, the trivial cases $n=1,2$.

Theorem I. Suppose Γ is a proper cone of R^{n}, where
(a) $n=3$ and Γ satisfies the flat curvature condition, or
(b) $n \geqq 4, \Gamma$ is $C^{[n / 2]}$, and Γ satisfies the sharp curvature condition.

[^0]
[^0]: AMS 1970 subject classifications. Primary 31B10, 31B25; Secondary 32F05, 52A20.
 Key words and phrases. Szegö and Poisson kernels, proper cones, compact section, decrease at infinity, contour integration, maximal function.
 ${ }^{1}$ This research was partially supported by an NSF Graduate Fellowship.

