ESTIMATES FOR THE SZEGÖ AND POISSON KERNELS **OF SUFFICIENTLY ROUNDED TUBE DOMAINS**

BY LAWRENCE J. DICKSON¹ Communicated by Alberto Calderón, February 28, 1972

In this paper we obtain estimates for the decrease at infinity of the Szegö and Poisson kernels, $S_{\Gamma}(X, Y) = S_{\Gamma;X}(Y)$ and $P_{\Gamma}(X, Y) = P_{\Gamma;X}(Y)$ $= |S_{\Gamma}(X, Y)|^2 ||S_{\Gamma;X}||_2^{-2}$, associated with proper cones $\Gamma \subset \mathbb{R}^n$ which are sufficiently smooth and satisfy certain curvature conditions. These estimates verify, for these cases, the conjecture of Stein (see [2], [4]) that the Poisson integral of an L^1 function converges restrictedly almost everywhere to that function on the distinguished boundary of a tube domain (Corollary IA). These and other results about the Poisson kernel will be elaborated on in [1].

Let Γ be a proper cone of \mathbb{R}^n (that is, a nonempty, open, convex cone whose closure contains no whole line), Γ^* its dual cone

(1)
$$\Gamma^* = \{ Y \in \mathbb{R}^n : (X, Y) > 0 \ \forall X \in \overline{\Gamma} - \{0\} \},$$

which is also proper, and $\Omega = \Omega_{\Gamma}$ its tube domain

(2)
$$\Omega = \Gamma \times i\mathbf{R}^n = \{Z \in \mathbf{C}^n : \operatorname{Re}(Z) \in \Gamma\}.$$

For $X \in \Gamma$ define the nonempty compact section $C_{\Gamma^*: X} = C_X^*$ of $\overline{\Gamma}^*$ as follows:

(3)
$$C_X^* = \{Y \in \overline{\Gamma}^* : (X, Y) = 1\} \subset \{Y : (X, Y) = 1\} \approx \mathbb{R}^{n-1};$$

and similarly for $C_{\Gamma;Y} = C_Y, Y \in \Gamma^*$.

We will say Γ is C^N , $N \ge 0$, if ∂C_Y is C^N . Γ will be said to satisfy the "flat curvature condition" if for some proper circular cone Δ of \mathbb{R}^n and every $P \in \partial \Gamma$ there is a rotation ρ_P of \mathbb{R}^n such that $P \in \partial(\rho_P \Delta)$ and $\rho_P \Delta \subset \Gamma$. The dual condition, the "sharp curvature condition," is stated similarly but reverses the last inclusion. We exclude, in our theorems, the trivial cases n = 1, 2.

THEOREM I. Suppose Γ is a proper cone of \mathbb{R}^n , where

- (a) n = 3 and Γ satisfies the flat curvature condition, or
- (b) $n \ge 4$, Γ is $C^{[n/2]}$, and Γ satisfies the sharp curvature condition.

Copyright © American Mathematical Society 1972

AMS 1970 subject classifications. Primary 31B10, 31B25; Secondary 32F05, 52A20.

Key words and phrases. Szegő and Poisson kernels, proper cones, compact section, decrease at infinity, contour integration, maximal function. ¹ This research was partially supported by an NSF Graduate Fellowship.