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The purpose of this note is to give an elementary proof of the following 
result. 

THEOREM A. Let G be a finitely generated nonelementary Kleinian group 
and let J be an anticonformal homeomorphism ofQ = Q(G), the set of dis­
continuity of G, where J commutes with every element of G. Then J is the 
restriction of an anticonformal, involutory fractional linear transformation 
{that is, J{z) = {az + b)/{cz + d), J2 = 1) and G is either Fuchsian or a 
Z2~extension of a Fuchsian group. Further, the mapping J with the above 
properties is unique. 

We prove Theorem A by reducing it to 

THEOREM B. Let F be a finitely generated Fuchsian group operating on 
l/i and U2, the upper and lower half-planes, respectively. Let fx and f2 

be schlicht functions on Ux and U2, where j \ °y ° fo1 andf2 °y ° f\~ x both 
define the same isomorphism of F onto a Kleinian group G, and fx = f2 

on that part of the real axis R lying in CIÇT). Then J\ andf2 are restrictions 
of the same fractional linear transformation. 

As a corollary to our proof of Theorem B, we obtain the somewhat 
more general 

THEOREM C. Let T be a finitely generated Fuchsian group of the first 
kind acting on Ut and U2. Let fx defined on Ul9 and f2 defined on U2 be 
holomorphic cover mappings where fi°y°fï1 cmd f2°y°fi1 both define 
the same homomorphism of T onto a Kleinian group G. Then G is either 
Fuchsian or a Z2-extension of a Fuchsian group {perhaps of the second 
kind). 

REMARK. Theorem C gives information about certain deformations 
of T, in the sense of Kra [6], where the same deformation is supported 
in both Ul and U2. Nothing is known about the more general case where 
ft and f2 are merely locally schlicht. 
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