INVOLUTIONS ON KLEINIAN GROUPS

BY I. KRA ${ }^{1}$ AND B. MASKIT
Communicated by Fred Gehring, April 3, 1972

The purpose of this note is to give an elementary proof of the following result.

Theorem A. Let G be a finitely generated nonelementary Kleinian group and let J be an anticonformal homeomorphism of $\Omega=\Omega(G)$, the set of discontinuity of G, where J commutes with every element of G. Then J is the restriction of an anticonformal, involutory fractional linear transformation (that is, $\left.J(z)=(a \bar{z}+b) /(c \bar{z}+d), J^{2}=1\right)$ and G is either Fuchsian or a Z_{2}-extension of a Fuchsian group. Further, the mapping J with the above properties is unique.

We prove Theorem A by reducing it to
Theorem B. Let Γ be a finitely generated Fuchsian group operating on U_{1} and U_{2}, the upper and lower half-planes, respectively. Let f_{1} and f_{2} be schlicht functions on U_{1} and U_{2}, where $f_{1} \circ \gamma \circ f_{1}^{-1}$ and $f_{2} \circ \gamma \circ f_{2}^{-1}$ both define the same isomorphism of Γ onto a Kleinian group G, and $f_{1}=f_{2}$ on that part of the real axis \boldsymbol{R} lying in $\Omega(\Gamma)$. Then f_{1} and f_{2} are restrictions of the same fractional linear transformation.

As a corollary to our proof of Theorem B, we obtain the somewhat more general

Theorem C. Let Γ be a finitely generated Fuchsian group of the first kind acting on U_{1} and U_{2}. Let f_{1} defined on U_{1}, and f_{2} defined on U_{2} be holomorphic cover mappings where $f_{1} \circ \gamma \circ f_{1}^{-1}$ and $f_{2} \circ \gamma \circ f_{2}^{-1}$ both define the same homomorphism of Γ onto a Kleinian group G. Then G is either Fuchsian or a Z_{2}-extension of a Fuchsian group (perhaps of the second kind).

Remark. Theorem \mathbf{C} gives information about certain deformations of Γ, in the sense of Kra [6], where the same deformation is supported in both U_{1} and U_{2}. Nothing is known about the more general case where f_{1} and f_{2} are merely locally schlicht.

[^0]
[^0]: AMS 1970 subject classifications. Primary 30A58; Secondary 32G15.
 Key words and phrases. Teichmüller space, Kleinian group.
 ${ }^{1}$ Research partially supported by NSF Grant GP-19572. This author is currently a John Simon Guggenheim Memorial Fellow.

