ON THE 2-SPHERES IN A 3-MANIFOLD

BY F. LAUDENBACH
Communicated by Raoul Bott, February 10, 1972

We shall give here an abstract of [2]. In this paper, the manifolds and the maps are C^{∞}. Let us recall some definitions:
(1) Let S and S^{\prime} be two spheres in a 3-manifold $V^{3} ; S$ and S^{\prime} are said to be homotopic if there exist two embeddings $\varphi, \varphi^{\prime}: S^{2} \rightarrow V$ with S and S^{\prime} as images that are homotopic in the family of smooth maps $S^{2} \rightarrow V . S$ and S^{\prime} are said to be isotopic if there exists a diffeomorphism H of V, isotopic to the identity, such that $H(S)=S^{\prime}$.
(2) $h: S^{2} \times[0,1] \rightarrow V$ is said to be a homotopy of disjunction of S^{\prime} from S if $h \mid S^{2} \times\{0\}$ is an embedding with S^{\prime} as image and if $h\left(S^{2} \times\{1\}\right) \subset V-S$.
(3) V satisfies the Poincaré conjecture if any compact contractible 3 -manifold of V is diffeomorphic to D^{3}.
We obtain the following results:
Theorem I. Let V be a 3-manifold satisfying the Poincaré conjecture and let S, S^{\prime} be two spheres in V. If there exists a homotopy of disjunction of S^{\prime} from S, then there exists an isotopy of disjunction.

Theorem II. With the same hypotheses as in Theorem I, if S and S^{\prime} are homotopic, then S and S^{\prime} are isotopic.
Theorem III. For any positive integer p, we shall denote $p \# S^{1} \times S^{2}$ the connected sum of p copies of $S^{1} \times S^{2}$. Let H be a diffeomorphism of $p \# S^{1} \times S^{2}$ homotopic to the identity. Then H is isotopic to the identity.

Remark. Theorems I and II are trivial if S is null homotopic, because then S is the boundary of a ball; hence we suppose that S is not null homotopic.

Theorem I \Rightarrow Theorem II. If $S^{\prime \prime}$ is homotopic to S, then there exists a disjunction homotopy of S^{\prime} from S. After Theorem I, there exists an isotopy of disjunction. If now S and S^{\prime} are homotopic and disjoint, they bound an h-cobordism, which is trivial, since V satisfies the Poincaré conjecture.

Theorem II \Rightarrow Theorem III. Let $\Sigma_{1}, \ldots, \Sigma_{p}$ be the p transversal spheres in the index 1 handlebodies of $p \# S^{1} \times S^{2}$. We can, by using mainly Theorem II, reduce to the case where $H \mid \Sigma_{1} \cup \ldots \cup \Sigma_{p}$ is the

