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ABSTRACT. The Boltzmann equation is considered on the appropriate 
Hubert space. The nonlinear problem is looked at as a perturbation 
of its linearized version. Thus, one deals with a pair of contractive 
semigroups, and a "wave operator" for this pair is studied. We find 
a subspace of finite codimension where the corresponding limit 
exists. 

The Boltzmann equation for a monoatomic gas is 

df/dt + Vl-gridf = Bf 

(1) =^ im)m)-f{v2)f(vJ\ 

' | vi — v21 J(K - v2|> 0)sin 0 dO d<t> dv2. 

Here ƒ (£, r, v) is the velocity distribution' function at time t at the point r, 
and the star on vx and v2 denotes the effect of a binary collision. 
I(\vi — v2|,ö) is the differential scattering cross section corresponding to 
the turning of the relative velocity vx — v2 in an interaction. 

We are concerned with the spatially homogeneous case and moreover 
we assume that we are dealing with a cut-off interaction, so that 

(2) f/(v,0)sin0d0# < oo. 

Under these restrictions the initial value problem for the Boltzmann 
equation has been much studied 

There is one molelular interaction, proposed by Maxwell, which sim­
plifies the mathematics in (1) a bit One proposes a central potential 
inversely proportional to i* and one finds that v/(v, 0) is a function of 
0 alone, with a pole at 0 = 0. This pole is removed by the cut-off assump­
tion (2). Thus the equation can be written as 
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