ON THE EXISTENCE OF A "WAVE OPERATOR" FOR THE BOLTZMANN EQUATION ${ }^{1}$

BY F. ALBERTO GRÜNBAUM
Communicated by Harry Kesten, February 1, 1972

Abstract

The Boltzmann equation is considered on the appropriate Hilbert space. The nonlinear problem is looked at as a perturbation of its linearized version. Thus, one deals with a pair of contractive semigroups, and a "wave operator" for this pair is studied. We find a subspace of finite codimension where the corresponding limit exists.

The Boltzmann equation for a monoatomic gas is

$$
\begin{align*}
\partial f / \partial t+\boldsymbol{v}_{1} \cdot \operatorname{grad} f & =B f \\
& =\iint\left[f\left(\nu_{2}^{*}\right) f\left(\nu_{1}^{*}\right)-f\left(\boldsymbol{v}_{2}\right) f\left(\boldsymbol{v}_{1}\right)\right] \tag{1}\\
& \cdot\left|\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right| I\left(\left|\boldsymbol{\nu}_{1}-\boldsymbol{v}_{2}\right|, \theta\right) \sin \theta d \theta d \phi d \boldsymbol{v}_{2} .
\end{align*}
$$

Here $f(t, r, v)$ is the velocity distribution function at time t at the point \boldsymbol{r}, and the star on v_{1} and ν_{2} denotes the effect of a binary collision. $I\left(\left|\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right|, \theta\right)$ is the differential scattering cross section corresponding to the turning of the relative velocity $\boldsymbol{v}_{1}-v_{2}$ in an interaction.

We are concerned with the spatially homogeneous case and moreover we assume that we are dealing with a cut-off interaction, so that

$$
\begin{equation*}
\int I(v, \theta) \sin \theta d \theta d \phi<\infty . \tag{2}
\end{equation*}
$$

Under these restrictions the initial value problem for the Boltzmann equation has been much studied.
There is one molelular interaction, proposed by Maxwell, which simplifies the mathematics in (1) a bit. One proposes a central potential inversely proportional to r^{4} and one finds that $\boldsymbol{v I}(v, \theta)$ is a function of θ alone, with a pole at $\theta=0$. This pole is removed by the cut-off assumption (2). Thus the equation can be written as

[^0]
[^0]: AMS 1970 subject classifications. Primary 45M05, 47H15, 82A40; Secondary 33A65, 60K35.

 Key words and phrases. Boltzmann equation, nonlinear equation, linearized version, contractive semigroups, wave operator, heat flow vector.
 ${ }^{1}$ The research reported in this paper was initiated at the Rockefeller University, and completed at New York University with the support of the U.S. Atomic Energy Commission, Contract No. AT(30-1)-1480.

