ON HERMITIAN STRUCTURES OF PRESCRIBED NONPOSITIVE HERMITIAN SCALAR CURVATURE

BY MELVYN S. BERGER
Communicated by Philip Hartman, January 18, 1972

1. Introduction. Let (M, g) be a given Kähler metric on a compact manifold M of complex dimension N. If one denotes the associated volume element by $d V_{g}$ and the scalar curvature by k_{g}, then it is known [1, p. 118] that $c(M)=\int_{M} k_{g} d V_{g}$ is a Kähler invariant (i.e. is independent under Kähler deformation of the particular Kähler metric g defined on M). Here we give some results on the following problem:
$\left(\pi_{N}\right)$ Find necessary and sufficient conditions on a Hölder continuous function $K(x)$ defined on (M, g) such that $K(x)$ is the Hermitian scalar curvature of some Hermitian metric \bar{g} on M conformally equivalent to \bar{g}.

If $N=1$, this problem was studied by the author in [2], and subsequently in [3] by Kazdan and Warner. However the methods used in these papers depend crucially on the fact that $N=1$. Indeed, certain calculus inequalities for the functions u in the Sobolev space $W_{1,2}(M, g)$ are required, that hold in case $N=1$ but not otherwise.
2. The main result. We seek a smooth real-valued function $u(x)$ defined on (M, g) such that the Hermitian scalar curvature $k_{\tilde{g}}(x)$ of M with respect to the Hermitian metric $\tilde{g}=e^{2 u} g$ is the given function $K(x)$. By means of the results of Chern [4], and Chavel [5], the function $u(x)$ is a solution of the semilinear elliptic equation

$$
N \Delta u-k_{g}(x)+K(x) e^{2 u}=0
$$

where Δ is the Laplace-Beltrami operator relative to (M, g). By integrating (1) over M, we find that a necessary condition for the solvability of (1) is that

$$
c(M) \equiv \int k_{g}(x) d V_{g}=\int K(x) e^{2 u} d V_{g} .
$$

By the remarks of the Introduction, this relation is invariant under Kähler deformation of g, and is an analogue of the Gauss-Bonnet formula for $N=1$. As in [2], (2) may be used to formulate isoperimetric variational problems whose solutions (if they exist) satisfy (1). However, if $N>1$, the solvability of these isoperimetric problems is in question, so an

[^0]
[^0]: AMS 1970 subject classifications. Primary 35J20, 53A30.

