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1. Introduction. In this note we will discuss the spectrum of tensor 
products of not necessarily bounded operators on Banach spaces X and 
Y X ® Y will denote the tensor product of X and Y in some uniform 
cross-norm [1], Thus, (i) X ® y is the completion of the algebraic tensor 
product in a norm with ||x ® y\\ = ||x|| \\y\\; (ii) for any Ae5£{X\ the 
bounded operators on X, and Be^(Y\ there is an operator A® Be 
Se{X ® Y) with (A ®B)(x®y) = Ax® By and \\A ® B\\ = \\A\\ \\B\\. 
Typical examples of such uniform cross-norms are the usual Hilbert space 
tensor product norm and the LP norm on LP(X ® X d\i ® dv) = LP(X, dfi) 
® LP(X dv)(l ^ p < oo). 

Given a polynomial (or a rational function) in two variables and closed 
operators A on X and B on Y, we want to discuss the spectrum of 
P(A ® ƒ, / ® B) as an operator on X ® Y For unbounded operators, 
one must define what it means for an operator C on X ® Y "to be" 
P(A ® 1,1 ® B). We take a fairly strong definition: 

DEFINITION 1. Given a closed operator A with nonempty resolvent set 
on a Banach space, X, we say that a sequence An of bounded operators 
on X is an âiï{A)~approximation if and only if An converges to A in norm 
resolvent sense [2] and each An is a polynomial in resolvents of A. 

DEFINITION 2. Given closed operators A and B on Banach spaces X 
and X and a rational function, P(z, co\ we say that a closed operator 
C on X ®Y equals P(A ®I9I®B) (or P(A, B\ for short) if and only if, 
there exists an ^(A)-approximation, Am and an ^(B)-approximation, Bn9 

so that P(Am Bn) converges in norm resolvent sense to C. 
Existence and uniqueness questions for P(A9 B) naturally arise. In 

applying Theorem 1 below, all the hard analysis is in proving that existence 
holds. The existence and uniqueness question is discussed in detail in a 
forthcoming paper [3], primarily in the case where A and B are generators 
of bounded holomorphic semigroups. In the general case, we do not know 
whether it is possible for two different operators C and C to both "equal" 
P(A9 B) but in that case our proof of Theorem 1 implies that (C - k)~l 

— (C — A)"1 is quasinilpotent. 
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