UNIFORM ESTIMATES FOR THE $\overline{\partial}$ -EOUATION **ON INTERSECTIONS OF** STRICTLY PSEUDOCONVEX DOMAINS¹

BY R. MICHAEL RANGE AND YUM-TONG SIU² Communicated by Lee Rubel, April 10, 1972

1. A few years ago Grauert-Lieb [5] and Henkin [3] solved independently the $\bar{\partial}$ -problem with uniform bounds for (0, 1)-forms on strictly pseudoconvex domains in C^n with smooth boundary, i.e., they proved that for every bounded $\bar{\partial}$ -closed $C_{00,1}^{\infty}$ -form f on such a domain D there is a bounded C^{∞} function u on D with $\partial u = f$. In the proofs, the solution u is constructed explicitly in terms of integrals involving a holomorphic kernel constructed by Henkin [2] and Ramirez [10]. Kerzman [7] extended this idea to obtain a local version of the above result, which enables him to get the same result for strictly pseudoconvex domains with a smooth boundary in a Stein manifold. Based on results of Koppelman [8], Lieb [9] then obtained uniform estimates for the $\bar{\partial}$ -equation for (0, q)forms on the same class of domains. Recently Henkin [4] announced the solution of the $\bar{\partial}$ -problem with uniform bounds for (0, 1)-forms on certain analytic polyhedra.

In this note we announce the solution of the $\bar{\partial}$ -problem with uniform bounds for (0, q)-forms on a domain which is the intersection of a finite number of strictly pseudoconvex domains intersecting normally. As a consequence of this result, for any complex manifold, one can find a locally finite open covering such that the $\bar{\partial}$ -equation can be solved with uniform bounds on intersections of members of the covering. This essentially answers a question raised by Gunning [6, p. 73].

2. To state our result precisely, let D be a bounded domain in C^n such that there exist a finite open covering $\{U_i\}_{i=1}^k$ of ∂D and strictly plurisubharmonic C^4 functions $\rho_j: U_j \to \mathbf{R}, \ 1 \leq j \leq k$, such that $D \cap (\bigcup_{j=1}^k U_j)$ is the set of all $x \in \bigcup_{j=1}^{k} U_j$ which, for every $1 \le j \le k$, satisfy $x \notin U_j$ or $\rho_j(x) < 0$. Set $S_j = \{x \in U_j \cap \partial D : \rho_j(x) = 0\}$. We assume that for every sequence $1 \leq i_1 < \ldots < i_l \leq k$, $1 \leq l \leq 2n$, and for every $x \in \bigcap_{\nu=1}^{l} S_{i_{\nu}}$ the 1-forms $d\rho_{i_{1}}, \ldots, d\rho_{i_{\nu}}$ are linearly independent over **R** at x.

AMS 1969 subject classifications. Primary 3215, 3222; Secondary 3250.

Key words and phrases. Integral representations, $\bar{\partial}$ estimates, pseudoconvex domains, cohomology with bounds. ¹ Research partially supported by National Science Foundation Grant GP-27624.

² Sloan Fellow.

Copyright © American Mathematical Society 1972