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The bounded (real or complex valued) functions on a set S are denoted 
by /«(S) while c0 and l^ denote the usual sequence spaces. For back
ground, notation and definitions concerning Lipschitz spaces, see [3]. 

The purpose of this note is to announce the following: 

THEOREM. Let (S, d) be an infinite metric space (i.e., S has infinitely many 
points) and suppose that infs*f d(s91) = 0. Then Lip(S, d) contains a subspace 
isomorphic with l^ and lip(S, d% 0 < a.< 1, contains a complemented 
subspace isomorphic with c0 (i.e., it is the range of a continuous projection 
onlip(S,d*)). 

Under the hypotheses of the theorem, we obtain two corollaries that 
were previously unknown in general. 

COROLLARY 1. lip(S, d*) is not complemented in Lip(S, da). 

COROLLARY 2. lip(S, da) is not isomorphic to a dual space. 

This also provides a proof of Theorem 2.6 in [3]. 
REMARKS. 1. Since l^ is a Pi-space (see [2, p. 94]) the subspace of 

Lip(S, d) isomorphic to l^ is complemented. 
2. In case infs#t d(s, t) > 0, it is shown in [3, Lemma 2.5] that Lip(S, d) 

= lip(S,d) = US). 
3. If lip(S, da) is separable, the subspace isomorphic with c0 is auto

matically complemented (see [2, p. 96]). It has been shown by K. deLeeuw 
and T. M. Jenkins that the dual of lip(S, da), and hence the space itself, 
is separable when S is compact (see [3, Theorem 4.5]). It is unknown for 
exactly which metric spaces lip(S, d*) [resp. its dual] is separable. Let us 
only mention that if S is the unit ball of the sequence space l± and d is the 
norm restricted to S, then lip(S, d% 0 < a < 1, is not separable. Also, 
see the example at the end of this paper. 

It was shown in [1] that if S is an infinite compact subset of Euclidean 
space and 0 < a < 1, then lip(S, d*) and Lip(S, d*) are isomorphic to c0 
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