AN INVERSE PROBLEM FOR GAUSSIAN PROCESSES ${ }^{1}$

BY F. ALBERTO GRÚNBAUM
Communicated by P. D. Lax, January 11, 1972

Let $X(t)$ be a centered stationary Gaussian process (c.s.G.p.). Its statistics are completely determined by its correlation function

$$
R(s)=E(X(t) X(t+s)) .
$$

This is a positive definite function and we assume it is continuous at the origin.

A problem often considered in the electrical engineering literature is that of determining the statistics of

$$
Y(t)=X^{2}(t)
$$

The best results, to our knowledge, consist of the computation of some few moments of higher order [1].

Two problems are considered in this note.

1. Does there exist a universal constant m such that the moments of order $\leqq m$ of $Y(t)$ are enough to determine its statistics? (Recall that $m=2$ for a Gaussian process.)
2. How much of the statistics of $X(t)$ can you read off from those of $Y(t)$?

The answers to 1 and 2 are embodied in the next two statements.
Theorem I. Let m be an arbitrary positive integer. There exists a centered stationary Gaussian process $X(t)$ such that the moments of order $\leqq m$ of $Y(t)=X^{2}(t)$ do not suffice to determine Y 's statistics.

Theorem II. The statistics of $Y(t)=X^{2}(t)$ determine uniquely those of $X(t)$.

The proof of this second result appears in [2]. Stationarity can be disposed of, but the Gaussian character of the process is essential. Finally the real line as a parameter space can be replaced by any arcwise connected space.

Proof of Theorem I. A simple computation shows that knowing all the moments of order $\leqq m$ of $Y(t)$ is equivalent to knowing the expressions

$$
\begin{equation*}
\sum_{\pi} R\left(t_{\pi 1}-t_{\pi n}\right) R\left(t_{\pi 2}-t_{\pi 1}\right) \ldots R\left(t_{\pi n}-t_{\pi(n-1)}\right), \quad 2 \leqq n \leqq m \tag{1}
\end{equation*}
$$

[^0]
[^0]: AMS 1970 subject classifications. Primary 60G15; Secondary 42A88, 43A35, 62M10.
 Key words and phrases. Square of a Gaussian process, moments, statistics, uniqueness.
 ${ }^{1}$ The research reported in this paper was supported by the U.S. Atomic Energy Commission, Contract No. AT (30-1)-1480.

