A NEW EXACT SEQUENCE FOR K_{2} AND SOME CONSEQUENCES FOR RINGS OF INTEGERS

BY R. KEITH DENNIS ${ }^{1}$ AND MICHAEL R. STEIN ${ }^{2}$

Communicated by Hyman Bass, November 29, 1971
Suppose R is a Dedekind domain with field of fractions F and at most countably many maximal ideals P. Using methods from the theory of algebraic groups, Bass and Tate [B-T] have proved the exactness of the sequence

$$
K_{2}(R) \rightarrow K_{2}(F) \xrightarrow{t} \coprod_{P} K_{1}(R / P) \rightarrow K_{1}(R) \rightarrow K_{1}(F) \rightarrow \cdots
$$

where t is induced by the tame symbols on R. They have also asked whether this sequence remains exact with " $0 \rightarrow$ " inserted on the left when R is a ring of algebraic integers. In this note we announce an affirmative response when R is a discrete valuation ring, and a proof that the resulting sequence is split exact under certain additional hypotheses on R. In addition, we derive consequences of these results for a ring, \mathfrak{D}, of integers in a number field. Among these are
(1) a complete determination of the groups $K_{2}(\mathfrak{D} / \mathfrak{a})$ for any ideal \mathfrak{a} of \mathfrak{D}; and
(2) examples of rings of integers \mathfrak{D} for which $K_{2}(\mathfrak{D})$ is not generated by symbols and $K_{2}(2, \mathfrak{D}) \rightarrow K_{2}(3, \mathfrak{D})$ is not surjective. Detailed proofs will appear elsewhere.

1. The exact sequence. Let A be a discrete valuation ring with field of fractions K and residue field k. Define the tame symbol [Mi, Lemma 11.4] $t: K_{2}(K) \rightarrow K_{1}(k) \approx k^{*}$ by $t\left(\left\{u \pi^{i}, v \pi^{j}\right\}\right)=(-1)^{i j} \bar{u}^{j} \bar{v}^{-i}, u, v \in A^{*}$, where π generates the maximal ideal of A.

Theorem 1. The sequence

$$
0 \rightarrow K_{2}(A) \rightarrow K_{2}(K) \xrightarrow{t} K_{1}(k) \rightarrow 0
$$

is exact. Moreover, if A is complete and k is perfect, this sequence is split exact.

The methods used in this proof are elementary in the sense that they

[^0]
[^0]: AMS 1970 subject classifications. Primary 18F25, 13D15, 20G25, 20G30; Secondary 12B25, 13J10.

 Key words and phrases. K_{2}, discrete valuation ring, universal for $G E_{n}$, stability theorems for K_{2}, algebraic integers, roots of unity, tame symbol, Steinberg symbol.
 ${ }^{1}$ Part of this research was done while the first author was a visiting member supported by the Institute for Advanced Study.

 2 Supported by NSF-GP-28915. The second author wishes to thank the Institute for Advanced Study for their hospitality during part of this research.

