A NEW EXACT SEQUENCE FOR K_2 AND SOME CONSEQUENCES FOR RINGS OF INTEGERS

BY R. KEITH DENNIS¹ AND MICHAEL R. STEIN²

Communicated by Hyman Bass, November 29, 1971

Suppose R is a Dedekind domain with field of fractions F and at most countably many maximal ideals P. Using methods from the theory of algebraic groups, Bass and Tate [B-T] have proved the exactness of the sequence

$$K_2(R) \to K_2(F) \stackrel{t}{\to} \coprod_P K_1(R/P) \to K_1(R) \to K_1(F) \to \cdots$$

where t is induced by the tame symbols on R. They have also asked whether this sequence remains exact with " $0 \rightarrow$ " inserted on the left when R is a ring of algebraic integers. In this note we announce an affirmative response when R is a discrete valuation ring, and a proof that the resulting sequence is split exact under certain additional hypotheses on R. In addition, we derive consequences of these results for a ring, \mathfrak{D} , of integers in a number field. Among these are

(1) a complete determination of the groups $K_2(\mathfrak{O}/\mathfrak{a})$ for any ideal \mathfrak{a} of \mathfrak{O} ; and

(2) examples of rings of integers \mathfrak{O} for which $K_2(\mathfrak{O})$ is not generated by symbols and $K_2(2, \mathfrak{O}) \to K_2(3, \mathfrak{O})$ is not surjective. Detailed proofs will appear elsewhere.

1. The exact sequence. Let A be a discrete valuation ring with field of fractions K and residue field k. Define the tame symbol [Mi, Lemma 11.4] $t: K_2(K) \to K_1(k) \approx k^*$ by $t(\{u\pi^i, v\pi^j\}) = (-1)^{ij} \bar{u}^j \bar{v}^{-i}$, $u, v \in A^*$, where π generates the maximal ideal of A.

THEOREM 1. The sequence

 $0 \to K_2(A) \to K_2(K) \stackrel{\iota}{\to} K_1(k) \to 0$

is exact. Moreover, if A is complete and k is perfect, this sequence is split exact.

The methods used in this proof are elementary in the sense that they

Copyright © American Mathematical Society 1972

AMS 1970 subject classifications. Primary 18F25, 13D15, 20G25, 20G30; Secondary 12B25, 13J10.

Key words and phrases. K_2 , discrete valuation ring, universal for GE_m , stability theorems for K_2 , algebraic integers, roots of unity, tame symbol, Steinberg symbol. ¹ Part of this research was done while the first author was a visiting member supported

¹ Part of this research was done while the first author was a visiting member supported by the Institute for Advanced Study. ² Supported by NSF-GP-28915. The second author wishes to thank the Institute for

² Supported by NSF-GP-28915. The second author wishes to thank the Institute for Advanced Study for their hospitality during part of this research.