FILTERED AND ASSOCIATED GRADED RINGS

BY JANE PURCELL COFFEE¹

Communicated by M. Gerstenhaber, January 3, 1972

- 1. Introduction. The object of this note is to present a condition which guarantees that a filtered ring A is isomorphic (in the category of filtered rings) to its associated graded ring gr A. The result is that a separated, complete, nonnegatively filtered ring A over a field k of characteristic 0 is isomorphic to gr A if and only if $\dim_k H^2(\operatorname{gr} A, \operatorname{gr} A) = \dim_k H^2(A, A)$ where the $\dim_k H^2(\operatorname{gr} A, \operatorname{gr} A)$ is finite. The tool is algebraic deformation theory. Rim has observed that an application of the main theorem yields a condition for a plane algebroid curve over an algebraically closed field of characteristic 0 to be of the form $u^m = v^n$ —a result obtained by Zariski [5] by a different approach.
- 2. Since A is a deformation of gr A (Gerstenhaber [1]), there exists a one-parameter family of deformations $A_t = \text{gr } A[[t]]$ with multiplication defined by $f_t(a,b) = ab + tF_1(a,b) + t^2F_2(a,b) + \cdots$. It is known that the deformation from gr A to A given by A_t is a "pop deformation", i.e., for $t \neq 0$, A_t is isomorphic as a filtered ring to A[[t]] (Gerstenhaber [2]).

Let δ_t denote the Hochschild coboundary operator of the algebra A_t , i.e., computed relative to the multiplication f_t . For example, for $\varphi \in C^1(A_t, A_t)$, the group of 1-cochains of A_t , one has

$$\delta_t \varphi(a, b) = f_t(a, \varphi b) - \varphi(f_t(a, b)) + f_t(\varphi a, b).$$

If there exists $\eta_t \in C^1(A_t, A_t)$ such that $z_t = \delta_t \eta_t$, then $z_t \in B^2(A_t, A_t)$. $z_0 \in Z^2(\text{gr } A, \text{gr } A)$ is extendible if there exists $z_t \in Z^2(A_t, A_t)$ such that

$$z_t = z_0 + tz_1 + t^2z_2 + t^3z_3 + \cdots$$

Note that every $b_0 \in B^2(\operatorname{gr} A, \operatorname{gr} A)$ is extendible since $b_0 = \delta \eta_0$ implies that $b_t = \delta_t \eta_0 = b_0 + tb_1 + t^2b_2 + \cdots$ is an extension of b_0 where η_0 is extended linearly over k(t). An extendible class of $H^2(\operatorname{gr} A, \operatorname{gr} A)$ is a $[z_0]$ for which there is a representative z_0 which is extendible. $z_0 \in Z^2(\operatorname{gr} A, \operatorname{gr} A)$ is a jump cocycle if there exists an extension z_t of z_0 such that $z_t \in B^2(A_t, A_t)$. Each $b_0 = \delta \eta_0 \in B^2(\operatorname{gr} A, \operatorname{gr} A)$ is a jump cocycle since $b_t = \delta_t \eta_0$ is an extension of b_0 and $b_t \in B^2(A_t, A_t)$. A jump class of $H^2(\operatorname{gr} A, \operatorname{gr} A)$ is a $[z_0]$ for which there exists a representative z_0 which is a jump cocycle.

AMS 1970 subject classifications. Primary 16A58; Secondary 18H15.

Key words and phrases. Filtered rings, associated graded rings, algebraic deformations, extendible cocycle, jump cocycle.

¹ The results announced here are contained in the author's Ph.D. thesis, written under the guidance of Murray Gerstenhaber at the University of Pennsylvania.