HECKE RINGS OF CONGRUENCE SUBGROUPS

BY NELO D. ALLAN

Communicated by M. Gerstenhaber, December 27, 1971

Let k be a p-adic field and let \hat{G} be a reductive group defined over k. Let G be a semigroup in \hat{G} , i.e. a multiplicative subset with the same unity as \hat{G} We shall assume that there exists an open compact subgroup Δ of \hat{G} which is contained in G. Let $\mathscr{R}(G, \Delta)$ be the free Z-module generated by the double cosets of G modulo Δ , with a product defined as in [3, Lemma 6]. We have an associative ring with unity which we shall call the Hecke Ring of G with respect to Δ . Let Δ_0 be a normal subgroup of Δ satisfying our conditions H-1 and H-2 of §1. Our purpose is to find generators and relations for $\mathscr{R}(G, \Delta_0) = \mathscr{R}$. There exists a finitely generated polynomial ring Z[G] which together with the group ring $Z[\Delta/\Delta_0]$ generates \mathscr{R} ; moreover \mathscr{R} is a $Z[\Delta/\Delta_0]$ -bimodule having Z[D] as basis. Our hypothesis H-1 and H-2 are verified for the principal congruence subgroups of most of the classical groups considered in [2].

We thank Mr. J. Shalika for the helpful discussions during the preparation of this work and also for pointing out some hopes that this might bring in solving Harish-Chandra conjecture on the finite dimensionality of the irreducible continuous representations of these rings.

1. General results. Let T be a connected k-closed subgroup of G consisting only of semisimple elements, and N^+ and N^- be maximal k-closed unipotent subgroups normalized by T. We set $N^+ = N^+ \cap \Delta$, and $U^- = N^- \cap \Delta$. We shall now state our first condition:

Condition H-1. There exists a finitely generated semigroup D in T such that $G = \Delta D \Delta$ (disjoint union), and for all $d \in D$ we have $dU^+d^{-1} \subset U^+$ and $d^{-1}U^-d \subset U^-$.

We turn now to our second condition. We let Δ_0 be a normal subgroup of Δ and we set $U_0^+ = U^+ \cap \Delta_0$ and $U_0^- = U^- \cap \Delta_0$. We shall assume that $T \cdot N^+ \cap \Delta_0 = (T \cap \Delta_0) \cdot U_0^+$.

Condition H-2. There exists a semigroup D in T such that $\Delta_0 = U_0^+ V U_0^-$ for a certain subgroup V of Δ_0 normalized by D, and for all d in D we have $dU_0^+ d^{-1} \subset U_0^+$ and $d^{-1}U_0^- d \subset U_0^-$.

Let us denote by $\overline{1}$ the unity of \mathscr{R} and by \overline{g} the double coset $\Delta_0 g \Delta_0$. We shall denote the product in \mathscr{R} by *.

THEOREM 1. Condition H-2 implies that $D = \Delta_0 D \Delta_0$ is a semigroup in \hat{G} and $\Re(\hat{D}, \Delta_0) \simeq Z[D]$.

AMS 1969 subject classifications. Primary 2220; Secondary 2265, 4256, 2070.

Key words and phrases. Hecke rings, algebraic groups, locally compact groups, convolution algebras.