REMARKS ON SOME RESULTS OF GELFAND AND FUKS

BY VICTOR W. GUILLEMIN¹

Communicated by I. M. Singer, December 17, 1971

By a topological Lie algebra over **R** we will mean a Lie algebra, \mathcal{L} , whose underlying vector space has a topology for which the bracket operation: $\mathscr{L} \times \mathscr{L} \to \mathscr{L}$ is continuous. One can associate with such a Lie algebra a complex, the *i*-cochains of which are all continuous alternating *i*-linear maps:

 $\omega:\mathscr{L}\times\cdots\times\mathscr{L}\to R$ (*)

and the coboundary operator defined by:

$$(**) \quad d\omega(\zeta_1,\ldots,\zeta_{i+1}) = \sum (-1)^{j+k} \omega([\zeta_j,\zeta_k],\zeta_1,\ldots,\zeta_i,\ldots,\zeta_j,\ldots,\zeta_{i+1})$$

the cohomology of this complex will be denoted $H(\mathcal{L}, \mathbf{R})$. Gelfand and Fuks have proved the following remarkable result.

THEOREM. Let X be a smooth compact oriented manifold. Let \mathscr{L} be the Lie algebra of smooth vector fields on X topologized by its C^{∞} topology. Then $H(\mathcal{L}, \mathbf{R})$ is finite dimensional in all dimensions.

See [1].

Figuring in their computations is a certain subcomplex of (*) which they call the diagonal complex. It consists of all i-cochains (*) having the property

 $\omega(\zeta_1,\ldots,\zeta_i)=0$ when supp $\zeta_1\cap\ldots\cap$ supp $\zeta_i=\Phi$.

The cohomology of this diagonal complex they denote by $H_{\Lambda}(\mathcal{L}, \mathbf{R})$. To describe their result about $H_{\lambda}(\mathcal{L}, \mathbf{R})$, consider the formal power series ring $R[[x_1, \ldots, x_n]]$ generated by the *n* indeterminates x_1, \ldots, x_n . The **R**-linear derivations of this ring are a Lie algebra over R which we will denote by L. The \mathcal{M} -adic topology on the formal power series ring induces a topology on L. Let $H(L, \mathbf{R})$ be the cohomology of L with respect to this topology. The result of Gelfand-Fuks is:

THEOREM. There is a spectral sequence whose E^2 term is the tensor product $H(X, \mathbf{R}) \otimes H(L, \mathbf{R})$ and whose E^{∞} term is $H^{j}(X, \mathbf{R})$ for $j \leq n$, and $H^{j-n}_{\Delta}(\mathcal{L}, \mathbf{R})$ for $j \geq n$.

AMS 1970 subject classifications. Primary 22E65. ¹ Supported by NSF P22927.