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By a topological Lie algebra over R we will mean a Lie algebra, if, 
whose underlying vector space has a topology for which the bracket 
operation: if x S£ -• 5£ is continuous. One can associate with such a 
Lie algebra a complex, the f-cochains of which are all continuous alterna
ting i-linear maps: 

(*) œ:& x ••• x JS? -*R 

and the coboundary operator defined by: 

(**) ia«i , . . . ,Ci + i ) = I ( - i y + ^ ^ ^ 

the cohomology of this complex will be denoted H(j£f, R). Gelfand and 
Fuks have proved the following remarkable result. 

THEOREM. Let X be a smooth compact oriented manifold. Let <£ be the 
Lie algebra of smooth vector fields on X topologized by its C°° topology. 
Then H(J?,R) is finite dimensional in all dimensions. 

See [1]. 
Figuring in their computations is a certain subcomplex of (*) which they 

call the diagonal complex. It consists of all i-cochains (*) having the 
property 

co(Ci,..., Cd = 0 when supp Ci n . . . n supp C* = ®. 

The cohomology of this diagonal complex they denote by HA(if, R). To 
describe their result about HA(if,/?), consider the formal power series 
ring R[[xu...,xn]] generated by the n indeterminates xu...,xn. The 
/Minear derivations of this ring are a Lie algebra over R which we will 
denote by L. The e#-adic topology on the formal power series ring in
duces a topology on L. Let H(L,R) be the cohomology of L with respect 
to this topology. The result of Gelfand-Fuks is: 

THEOREM. There is a spectral sequence whose E2 term is the tensor 
product H(X,R)<g> H(L,R) and whose £°° term is H\X,R) for j ^ n, 
andHj-n(£>,R)forj^ n. 
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