OPERATORS WITH DISCONNECTED SPECTRA ARE DENSE

BY DOMINGO A. HERRERO¹ AND NORBERTO SALINAS²

Communicated by Fred Gehring, December 13, 1971

ABSTRACT. It is proven that the set of all (bounded linear) operators on a complex infinite dimensional Banach space having disconnected spectra is an open uniformly dense subset of the algebra of all operators.

In [3, Problem 8], P. R. Halmos asked whether the set of all reducible operators in a complex infinite dimensional separable Hilbert space ${\mathscr H}$ is uniformly dense in the algebra $\mathcal{L}(\mathcal{H})$ of all (bounded linear) operators on \mathcal{H} . In the present note we answer affirmatively a related question:

Is the set of all operators on a Banach space X having nontrivial complementary hyperinvariant subspaces dense in $\mathcal{L}(\mathcal{X})$? (Recall that a subspace \mathcal{M} of \mathcal{X} is hyperinvariant for $T \in \mathcal{L}(\mathcal{X})$ if $A\mathcal{M} \subset \mathcal{M}$, for all $A \in \mathcal{L}(\mathcal{X})$ commuting with T [1]. Here and in what follows, subspace means closed linear manifold.)

Moreover, we proved the following stronger (see [4]) result:

THEOREM. Let \mathscr{X} be a complex infinite dimensional Banach space and let $T \in \mathcal{L}(\mathcal{X})$. Then, given any $\varepsilon > 0$, there exists an $A \in \mathcal{L}(\mathcal{X})$ such that (1) rank (A) = 1; (2) $||A|| < \varepsilon$, and (3) the spectrum of T + A is disconnected.

PROOF. Let $\sigma(T)$ (E(T), resp.) denote the spectrum (essential spectrum, resp.) of T.

Let λ_0 be any point of E(T) such that $\operatorname{Re} \lambda_0 = \max\{\operatorname{Re} \lambda : \lambda \in E(T)\}$. Then, for every compact operator K, $\lambda_0 \in E(T + K) = E(T) \subset \sigma(T + K)$, and it follows from [4, Theorem 1] that, if there exists a $\lambda \in \sigma(T + K)$ such that $\operatorname{Re} \lambda > \operatorname{Re} \lambda_0$, then $\sigma(T + K)$ is disconnected, λ is an isolated point of $\sigma(T+K)$ such that $(T+K-\lambda)^n \mathcal{X}$ is closed for every $n \ge 0$ and, if $\mathcal{M} = \bigcap_{n=1}^{\infty} (T+K-\lambda)^n \mathcal{X}$ and $\mathcal{N} = \text{closure}\{\bigcup_{n=1}^{\infty} \ker(T+K-\lambda)^n\},$ then dim $\mathcal{N} = \dim(\mathcal{X}/\mathcal{M}) < \infty$.

Therefore, to complete the proof, it suffices to find an A satisfying (1), (2) and such that $\lambda_0 + \gamma \in \sigma(T + A)$ for some γ , $0 < \gamma < \varepsilon/2$.

Since $\lambda_0 \in \text{bdry } \sigma(T)$, there exists an $x \in \mathcal{X}$ such that ||x|| = 1 and $\|(T-\lambda_0)x\|<\varepsilon/2$ (see [2, Chapter 7]). By Hahn-Banach theorem, there

AMS 1970 subject classifications. Primary 47A15; Secondary 47A10, 47A55.

Key words and phrases. Complementary subspaces, hyperinvariant subspaces, disconnected spectrum, essential spectrum.

¹ State University of New York at Albany, Albany, New York 12203. Research supported

by NSF Grant GU3171.

² Institute for Advanced Study, Princeton, New Jersey 08540. Research supported in part by NSF Grant GP 7952X3.