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Let Cn denote the collection of all abelian groups that can be funda
mental groups of regions in S". It is clear that Ck c Ck+ v It is also easy to 
see that Cx and C2 each consist of just two groups—the trivial groups 1 
and the infinite cyclic group Z. We shall see in this paper that actually 
Ck = Ck+1 for k ^ 4, so we shall be concerned mainly with the difference 
between regions in S3 and regions in S4. 

If a region A in S" is not S* itself, we may assume that A c Rn, and that 
there is a point e of A that is at a distance ^ 1 from Rn - A. Using bary
centric subdivision Tk of JRW of mesh converging to zero, where 7J is a 
refinement of Tk if / < fc, let Uk be the interior of the union of those simplexes 
that lie in A and are at a distance rgfc from e. Take Ak to be the component 
of Uk that contains e(. It is easy to see that A{ ^ Ak if / < /c, and that 
U*°= i ^* = A ; thus n(A) is equal to the direct limit of the sequence {n(Ak)}. 
Since each n(Ak) is finitely generated, n(A) must be countable. 

Now suppose that G = n(A) is abelian. Since Gt = n(A^ is finitely 
generated, the image Kt of Gt in some Gs = n(As) of the inclusion Gt -• Gs 

must be abelian. Replacing the sequence {Gt} by a subsequence if necessary, 
we may assume that the image Kt of Gt in Gi+1 is abelian. 

The calculation of C3 is closely related to the following problem : "Which 
elements of a link group commute?" In fact, if we use brick subdivision 
instead of barycentric subdivision of R3 in the construction of Ak, we may 
assume that each S3 - Ak is the union of a finite number of handle-bodies-
with-knotted-holes, semilinearly imbedded in S3. Since each Gk is finitely 
generated, so is its abelianized group Gk = Hx(Ak). We can find non-
singular loops {xl9...9xp} that generate H^A^. By the Alexander duality 
theorem and the fact that S3 - Ak is a manifold, we* can also find non-
singular loops {yu..., yp} in S3 - Ak which are dual to {x l 5 . . . , xp} in the 
sense that the linking number (xh yt) between xt and yt is equal to Sij9 where 
ôtj is the Kronecker delta. The image of any two elements of Gk _ j in Gk must 
commute in the complement of the link y 1 u y 2 U ' " U y p . 

The following theorem (cf. [6] and [7]) makes it possible to deal with 
arbitrary links. 
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