WHICH ABELIAN GROUPS CAN BE FUNDAMENTAL GROUPS OF REGIONS IN EUCLIDEAN SPACES? ${ }^{1}$

BY BAI CHING CHANG
Communicated by Emery Thomas, November 10, 1971

Let C_{n} denote the collection of all abelian groups that can be fundamental groups of regions in S^{n}. It is clear that $C_{k} \subseteq C_{k+1}$. It is also easy to see that C_{1} and C_{2} each consist of just two groups-the trivial groups 1 and the infinite cyclic group Z. We shall see in this paper that actually $C_{k}=C_{k+1}$ for $k \geqq 4$, so we shall be concerned mainly with the difference between regions in S^{3} and regions in S^{4}.
If a region A in S^{n} is not S^{n} itself, we may assume that $A \subset R^{n}$, and that there is a point e of A that is at a distance $\geqq 1$ from $R^{n}-A$. Using barycentric subdivision T_{k} of R^{n} of mesh converging to zero, where T_{l} is a refinement of T_{k} if $l<k$, let U_{k} be the interior of the union of those simplexes that lie in A and are at a distance $\leqq k$ from e. Take A_{k} to be the component of U_{k} that contains e_{i}. It is easy to see that $A_{l} \leqq A_{k}$ if $l<k$, and that $\bigcup_{k=1}^{\infty} A_{k}=A$; thus $\pi(A)$ is equal to the direct limit of the sequence $\left\{\pi\left(A_{k}\right)\right\}$. Since each $\pi\left(A_{k}\right)$ is finitely generated, $\pi(A)$ must be countable.

Now suppose that $G=\pi(A)$ is abelian. Since $G_{i}=\pi\left(A_{i}\right)$ is finitely generated, the image K_{i} of G_{i} in some $G_{s}=\pi\left(A_{s}\right)$ of the inclusion $G_{i} \rightarrow G_{s}$ must be abelian. Replacing the sequence $\left\{G_{i}\right\}$ by a subsequence if necessary, we may assume that the image K_{i} of G_{i} in G_{i+1} is abelian.
The calculation of C_{3} is closely related to the following problem: "Which elements of a link group commute?" In fact, if we use brick subdivision instead of barycentric subdivision of R^{3} in the construction of A_{k}, we may assume that each $S^{3}-A_{k}$ is the union of a finite number of handle-bodies-with-knotted-holes, semilinearly imbedded in S^{3}. Since each G_{k} is finitely generated, so is its abelianized group $\bar{G}_{k}=H_{1}\left(A_{k}\right)$. We can find nonsingular loops $\left\{x_{1}, \ldots, x_{p}\right\}$ that generate $H_{1}\left(A_{k}\right)$. By the Alexander duality theorem and the fact that $S^{3}-A_{k}$ is a manifold, we can also find nonsingular loops $\left\{y_{1}, \ldots, y_{p}\right\}$ in $S^{3}-A_{k}$ which are dual to $\left\{x_{1}, \ldots, x_{p}\right\}$ in the sense that the linking number $\left(x_{i}, y_{i}\right)$ between x_{i} and y_{i} is equal to $\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta. The image of any two elements of G_{k-1} in G_{k} must commute in the complement of the link $y_{1} \cup y_{2} \cup \cdots \cup y_{p}$.
The following theorem (cf. [6] and [7]) makes it possible to deal with arbitrary links.

[^0]Copyright © American Mathematical Society 1972

[^0]: AMS 1969 subject classifications. Primary 5520, 5705.
 ${ }^{1}$ This paper represents a portion of the author's Ph.D. thesis, written under the direction of Professor Ralph H. Fox at Princeton University.

