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Introduction. Let M be a noncompact, orientable 3-manifold with a 
(possibly empty) boundary dM. Suppose g and h are homeomorphisms 
of M onto itself. When is g isotopic to hi This question was essentially 
answered in the compact case by Waldhausen in [3] ; roughly the answer 
given was—when g is homotopic to h. We will show that essentially the 
same answer can be given for a large and interesting class of noncompact 
manifolds; these manifolds include Whitehead-type contractible open sub
sets of R3. Full proofs of the theorems stated below will be given elsewhere. 
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Preliminaries. The ambient manifolds considered here are orientable, 
triangulable and 3-dimensional. By a surface in M, we mean a 2-dimen-
sional, triangulable manifold which is properly imbedded in M. (Every
thing is considered from the piecewise linear point of view.) M is an 
irreducible manifold if every 2-sphere in M bounds a ball in M. For non-
compact manifolds this implies that M is aspherical. A surface F in M or 
dM different from a 2-sphere is incompressible in M if n^F) -• n^M) is a 
monomorphism. M is boundary-irreducible if each component of dM is an 
incompressible surface. Finally we need the notion of a hierarchy for a 
manifold. The triple (Fj9 U(Fj), Mj)J = 1,2,..., is a hierarchy for M = Mx 

if each F, is a compact incompressible orientable surface in Mj9 Mj+l 

= cl(M, — U(Fj)\ where U(Fj) is a regular neighborhood of Fj in Mj [4], 
and M — (J, Û(Fj) is a collection of balls. If M is compact we require the 
sequence F, to be finite. For M compact these surfaces have been con
structed by Haken when M is irreducible and has an incompressible sur
face. Waldhausen uses the hierarchy to prove the isotopy theorem in the 
compact case. 
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