COTERMINAL FAMILIES AND THE STRONG MARKOV PROPERTY

BY A. O. PITTENGER AND C. T. SHIH Communicated by Harry Kesten, October 27, 1971

1. Let Ω be the set of right continuous paths mapping $[0, \infty)$ into (E_{Δ}, ρ) , where E is a locally compact, separable metric space with metric ρ and $E_{\Delta} = E \cup \{\Delta\}, \{\Delta\}$ the point at infinity. Following the notation of [1], we let $X = (\Omega, X_t, \mathcal{F}, \mathcal{F}_t, \theta_t, P^x)$ be a strong Markov process with stationary transition probabilities on (E_{Δ}, ρ) , and we use \mathcal{B} and \mathcal{B}_{Δ} to denote the σ -fields of Borel sets on E and E_{Δ} respectively. The σ -fields $\{\mathcal{F}_t, 0 \leq t\}$ are assumed to be right continuous. Finally we assume a fixed initial distribution μ , and all a.s. statements will refer to $P = \int_{E_{\Delta}} \mu(dx)P^x$.

The purpose of this note is to outline a type of strong Markov property for a class of random times, resembling last exit times from sets. To motivate the problem, write the strong Markov property at a stopping time T as

(1)
$$P(X_t \in A | \mathscr{F}_T) = P^{X_T}(X_{t-T} \in A) \quad \text{a.s.}$$

on $\{T < t\}$, where \mathscr{F}_T is the usual σ -field of information up through T. We are interested in finding an analogue of (1) with T replaced by random times such as L^t , the last exit before (t + 0) from a given set, and \mathscr{F}_T replaced by an appropriate σ -field. Since the conditioning now involves the future of the process, the distributions on the right of (1) will be altered but will be seen to depend only on X_{L^t} or $X_{L^{t-}}$ and $t - L^t$.

As an example suppose X is reflecting Brownian motion on $[0, \infty)$, $P = P^0$ and L^t is the last hit of $\{0\}$ prior to t. We leave it to the reader to verify that if $\sigma(L^t)$ is the σ -field generated by L^t , then

(2)
$$P^{0}(X_{t} \in A | \sigma(L^{t})) = \int_{A} \frac{y \exp(-y^{2}/2(t-L^{t})) dy}{t-L^{t}} \quad \text{a.s.}$$

on $\{0 < L^t < t\}$. Moreover another computation shows that

(3)
$$\int_{0}^{\infty} \frac{1}{\sqrt{s}} \left(\frac{y \exp(-y^{2}/2s) \, dy}{s} \right) P^{y}(T_{\{0\}} > t, X_{t} \in A)$$
$$= \int_{A} \frac{1}{\sqrt{s+t}} \left(\frac{x \exp(-x^{2}/2(t+s)) \, dx}{s+t} \right),$$

AMS 1970 subject classifications. Primary 60J25, 60J40.

Copyright O American Mathematical Society 1972