A REMARK ON STRONG PSEUDOCONVEXITY FOR ELLIPTIC OPERATORS

BY VICTOR GUILLEMIN¹

Communicated by Shlomo Sternberg, October 19, 1971

The purpose of this note is to give a kind of intrinsic characterization of second order elliptic operators.

Let p(x, D) be an *m*th order elliptic operator defined on an open subset U of \mathbf{R}^n . Let $p_m(x,\xi)$ be its leading symbol. Let φ be a smooth function on U with the property that grad $\varphi \neq 0$ when $\varphi = 0$. The hypersurface, $\varphi = 0$, is said to be strongly pseudoconvex at a point $x \in \varphi^{-1}(0)$ if

(1)
$$\sum_{j=1}^{k} \frac{\partial^2 \varphi}{\partial x_j \partial x_k} p_m^{(j)}(x,\xi) \overline{p_m^{(k)}}(x,\xi) + \tau^{-1} \operatorname{Im} \sum_{j=1}^{k} p_{m,k}(x,\xi) \overline{p^{(k)}(x,\xi)} > 0,$$

for all $\xi = \eta + i\tau$ grad φ , where $\eta \in \mathbf{R}^n$ and $0 \neq \tau \in \mathbf{R}$, satisfying the equations:

(2)
$$p_m(x,\xi) = 0 = \sum p_m^{(j)}(x,\xi) \, \partial \psi / \partial x_j.$$

(See Hörmander [2, Chapter 8].)

If p is a second order operator and its leading symbol is real, then, for $\eta, N \in \mathbf{R}^n$ not multiples of each other, the equations

(3)
$$p_2(x, \eta + \tau N) = 0 = \sum p_2^{(j)}(x, \eta + \tau N)N_j$$

have no solutions, so condition (1) is satisfied trivially. This proves

PROPOSITION 1. If p(x, D) is second order and its leading symbol is real, then every hypersurface is strongly pseudoconvex.

In this note we will prove a result in the other direction, namely,

PROPOSITION 2. If $n \ge 3$ and every hypersurface is strongly pseudoconvex then p(x, D) is second order.

REMARK 1. If there exist vectors n, N satisfying (3) it is easy to construct a φ , with grad $\varphi(x) = N$, violating (1). Therefore for every surface with normal, N, at x to be strongly pseudoconvex at x it is necessary and sufficient that there be no η , N satisfying (3). Hence Proposition 2 can be reformulated as a simple algebraic assertion, namely,

PROPOSITION 3. Let $p(\zeta), \zeta \in \mathbb{C}^n$, be a homogeneous polynomial of degree m. Assume $n \geq 3$, and assume p satisfies the following conditions:

Copyright © American Mathematical Society 1972

AMS 1970 subject classifications. Primary 35-XX. ¹ Supported by NSF GP-22927.