A GENERALIZATION OF THE HELLY SELECTION THEOREM

BY KEITH SCHRADER

Communicated by Victor Klee, November 16, 1971

1. Introduction. In this paper we consider sequences $\{y_k\}$ of real valued functions defined on an interval *I*. We are interested in finding conditions which when satisfied by the sequence $\{y_k\}$ guarantee the existence of a subsequence of $\{y_k\}$ which converges pointwise on *I*. With this in mind we make the following definition.

DEFINITION 1.1. Let $f: I \to R$ and consider the set \mathscr{P} of all finite nonempty partitions $P = \{x_1, x_2, \ldots, x_n\}$ of I where $n \ge 1$ and $x_1 < x_2$ $< \cdots < x_n$. We denote by T(f) the oscillation of f on I and define it by

$$T(f) = \sup_{P \in \mathscr{P}} \left\{ \sum_{i=1}^{n} |f(x_i)| : (-1)^i f(x_i) > 0 \ \forall i \\ \text{or} \ (-1)^i f(x_i) < 0 \ \forall i \text{ or} \ (-1)^i f(x_i) = 0 \ \forall i \right\}$$

For a function f which is nonnegative on I the oscillation of f on I, T(f), is the supremum of f on I. It is not the case, however, that the set of f for which T(f) is finite forms a Banach space with norm T(f) since closure under addition is not satisfied. It is also not the case that the set of f for which T(f) is finite forms a metric space with metric given by d(f,g)= T(f - g) because the triangle inequality is not satisfied.

Our main result, for which we give a number of applications later, is the following.

THEOREM 1.2. Let $\{y_k\}$ be such that $y_k: I \to R$. If $T(y_k - y_j) \leq M$ for all k, j then $\{y_k\}$ contains a subsequence which converges pointwise on I.

The original motivation for this theorem comes from the study of boundary value problems. In [3] the author showed, among other things, that if $\{y_k\}$ is a uniformly bounded sequence of continuous real valued functions defined on an interval *I* having the property that there exists a positive integer *N* such that y_k and y_j are not equal at more than *N* values of *x* for $k \neq j$ then y_k contains a subsequence which converges at every point in *I*. This result is a corollary of Theorem 1.2. A more complete description of the connection between such convergence theorems and the

AMS 1969 subject classifications. Primary 4020; Secondary 3436.

Key words and phrases. Sequences of functions, pointwise convergence.

Copyright © American Mathematical Society 1972