PERTURBATION OF EMBEDDED EIGENVALUES¹

BY JAMES S. HOWLAND Communicated by Peter Lax, August 5, 1971

In [4] a Weinstein-Aronszajn multiplicity theory for embedded eigenvalues arising from a certain type of "resonance" was developed. The results announced here continue the work of [4], and generalize results of [2] and [3] to embedded eigenvalues of arbitrary finite multiplicity m, and to perturbations of infinite rank. In particular, we are able to discuss certain operators of quantum mechanics. A notable feature of the case m > 1 is the appearance of Puiseux series for the resonances, in analogy to their appearance in the perturbation theory of *isolated* eigenvalues of *nonselfadjoint* operators [6, Chapters 2 and 7].

1. **Puiseux series for resonances.** Let T be a selfadjoint operator on a separable Hilbert space \mathscr{H} , with resolvent $G(z) = (T - z)^{-1}$, and let λ_0 be a point eigenvalue of T of finite multiplicity m. Denote by P the orthogonal projection on ker $(T - \lambda_0)$. Let A and B be bounded commuting selfadjoint operators on \mathscr{H} , and define

$$H(\kappa) = T + \kappa AB.$$

For real κ , $H(\kappa)$ is selfadjoint and we define $R(z, \kappa) = (H(\kappa) - z)^{-1}$. Let Ω be a neighborhood λ_0 in the complex plane, and assume that the operator Q(z) = AG(z)B is bounded and has meromorphic continuations $Q^{\pm}(z)$ from $\Omega^{\pm} = \{z \in \Omega : \text{Im } z > 0\}$ to Ω . There is then a simple pole of $Q^+(z)$ at λ_0 with residue *APB*. The functions $Q^+(z)$ and $Q^-(z)$ will not agree on Ω if the eigenvalue λ_0 is embedded in the continuous spectrum of *T*. The operator

$$Q_1(z,\kappa) = AR(z,\kappa)B$$

also has meromorphic continuations $Q_1^{\pm}(z,\kappa)$ given by

$$I - \kappa Q_1(z, \kappa) = [I + \kappa Q(z, \kappa)]^{-1}.$$

It is the poles of $Q_1^+(z, \kappa)$ that we refer to as the *resonances* of this perturbation problem.

The following was proved in [4, §5].

Copyright © American Mathematical Society 1972

AMS 1969 subject classifications. Primary 4748, 8147; Secondary 3577.

Key words and phrases. Perturbation theory, embedded eigenvalues, resonance, Puiseux series, spectral concentration, Schroedinger operator, Auger effect, Fermi's Golden Rule. ¹ This research was supported in part by ARO Grant DA-ARO-D-31-124-G1005.