THE INNER PRODUCT OF PATH SPACE MEASURES CORRESPONDING TO RANDOM PROCESSES WITH INDEPENDENT INCREMENTS

BY CHARLES M. NEWMAN¹ Communicated by P. D. Lax, October 25, 1971

Let $X_1(t)$ and $X_2(t)$ be any two stochastically continuous, homogeneous random processes on [0, T] with independent increments. It follows that $E(\exp(irX_k(t))) = \exp(tD_k(r))$, where

(1)
$$D_k(r) = i\alpha_k r - \beta_k \frac{r^2}{2} + \int_R \left(e^{iru} - 1 - \frac{iru}{1+u^2} \right) d\sigma_k(u)$$

for some $\alpha_k \in R$, $\beta_k \ge 0$, and Borel measure σ_k with $\int_R (u^2/(1 + u^2)) d\sigma_k(u) < \infty$ (and with $\sigma_k(\{0\}) = 0$). We denote by ρ_k (resp. ρ_k^{*t}) the probability measure on R with characteristic function, $\exp(D_k(r))$ (resp. $\exp(tD_k(r))$), and by $\tilde{\rho}_k$ the probability measure on path space corresponding to X_k . $\tilde{\rho}_k$ is a Borel measure (with respect to the Skorokhod topology) on D = D[0, T], the space of real valued functions on [0, T] which are right-continuous and have left-hand limits, and may be defined in terms of ρ_k in the usual way.

If μ_1 and μ_2 are two measures on R (or D), we define $\sqrt{\mu_1}\sqrt{\mu_2}$ as the unique measure satisfying

$$\frac{d(\sqrt{\mu_1}\sqrt{\mu_2})}{d\nu} = \sqrt{\frac{d\mu_1}{d\nu}}\sqrt{\frac{d\mu_2}{d\nu}}$$

for any $v \gg \mu_1, \mu_2$; $(\sqrt{\mu_1} - \sqrt{\mu_2})^2$ thus denotes the (positive) measure, $(\mu_1 + \mu_2) - 2\sqrt{\mu_1}\sqrt{\mu_2}$. Given ρ_1 and ρ_2 as above, we define $N = N(\rho_1, \rho_2) = \int_{\mathbb{R}} d(\sqrt{\sigma_1} - \sqrt{\sigma_2})^2$; N may be finite or infinite. If $N < \infty$, it is easily shown that $\int_{\mathbb{R}} (|u|/(1 + u^2)) d|\sigma_1 - \sigma_2| < \infty$ and we then define

$$\gamma = \gamma(\rho_1, \rho_2) = \frac{1}{2} \left(\alpha_1 - \alpha_2 - \int_R \frac{u}{1+u^2} d(\sigma_1 - \sigma_2) \right).$$

AMS 1970 subject classifications. Primary 28A40, 60G30, 60J30; Secondary 60B05, 60G20. Key words and phrases. Random process, independent increments, path space measure, inner product, mutual singularity, equivalence of measures.

¹ This research was partially sponsored by AFOSR Contract F44620-71-C-0108 and AF 49(638)1545 at Princeton University and by NSF Grant GP-24003 at the Courant Institute.