INVARIANT SUBSPACE THEORY FOR THREE-DIMENSIONAL NILMANIFOLDS

BY LOUIS AUSLANDER¹ AND JONATHAN BREZIN^{2.3} Communicated by C. C. Moore, September 15, 1971

1. Introduction. Let N denote the nilpotent Lie group whose underlying manifold is three-dimensional Euclidean space R^3 and whose group operation is given by (x, y, z)(x', y', z') = (x + x', y + y', z + z' + xy'). The subset $\Gamma = \{(a, b, c) : a, b, c \in \mathbb{Z}\}$ of N is a subgroup, and the quotient N/Γ is a compact manifold, denoted M. On the manifold M there is a unique probability measure v invariant under translation by N. (We use right cosets $\Gamma g, g \in N$, and hence translation here means right-translation.) We will use R to denote the regular representation of N on $L^2(M, \nu)$, namely: $(R_{\mathfrak{g}}\phi)(\Gamma h) = \phi(\Gamma hg)$ for all $g, h \in N$ and all $\phi \in L^2(M, v)$.

The representation R decomposes into a direct-sum of irreducible subrepresentations. However, some of the irreducible representations in the sum occur with multiplicity greater than 1, and consequently, $L^{2}(M, v)$ does not decompose uniquely into a direct sum of irreducible R-invariant subspaces. The theorems announced below are aimed toward remedying this situation by introducing into the family of all irreducible R-invariant subspaces of $L^{2}(M, v)$ a certain amount of structure.

Let $_{3}N$ denote the center of N. The Stone-von Neumann theorem says that for each nonzero real number ξ , there is a unique (up to unitary equivalence) irreducible unitary representation U^{ξ} whose restriction to $_{3}N$ is a multiple of the character $(0, 0, z) \mapsto e^{2\pi i \xi z}$ of $_{3}N$. We will use $L(\xi)$ to denote the Hilbert space of U^{ξ} .

It is easy to see that, aside from the characters of N vanishing on Γ , the only irreducible summands of R are those U^{ξ} where ξ is a nonzero integer. In fact, let n be a nonzero integer, and let H(n) denote the subspace of $L^{2}(M, v)$ consisting of those functions f satisfying $(R_{(0,0,z)}f)(\Gamma h)$ $= e^{2\pi i n z} f(\Gamma h)$ for all $h \in N$ and $(0, 0, z) \in {}_{3}N$; then the restriction of R to H(n) is unitarily equivalent to the representation $U^n \otimes 1$ of N on $L(n) \otimes C^{[n]}$. (For a proof, see C. C. Moore [2].) It follows that the irreducible subspaces of H(n) are in one-to-one correspondence with the space of lines in $C^{[n]}$ through 0—that is, projective space $CP^{[n]-1}$. The theorems below refine this observation.

Copyright © American Mathematical Society 1972

AMS 1969 subject classifications. Primary 2265.

Key words and phrases. Nilmanifold, harmonic analysis.

¹ John Simon Guggenheim Fellow. ² Alfred P. Sloan Fellow.

³ Both authors partially supported by the National Science Foundation.