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Zn, Zn will denote the multiplicative, and additive cyclic groups of 
order n. 

Recall that a simplicial complex K is a Z„-homology manifold if the 
link of every simplex in K is a Z„-homology sphere. A Z„-homology mani
fold pair (X, dK) is denned similarly. A group action G x X -» X on the 
space X is semifree if, for each x e X, G acts either trivially or freely on the 
orbit of x. 

Let n be an even integer, and (X, dK) c (Dm, dDm) a combinatorial 
embedding having even codimension ^ 6 and further satisfying 
KndDm = dK. 

THEOREM. K a Dm is the fixed point set of a semifree, combinatorial 
group action Zn x Dm -» Dm if and only if 

(1) H(K,Z„) = 0, 
(2) (K, dK) is a Zn-homology manifold pair. 

The "only if" part of the theorem was proven by P. A. Smith [3]. 
The theorem holds for n odd provided the regular neighborhood for 

(X, dK) in (Dm, dDm) admits a one-parameter cross section, e.g., (K, dK) 
a (Dm, dDm) factors as (K, dK) c (Dw~2, dDm~2) c (Dm, dDm). 

A classification theorem can also be proven, which gives a bijective 
correspondence between equivalence classes of semifree Z„-actions on Dm 

having K a JJT for fixed point set and the elements of H0(K, dK\ where 
H^( ) is a certain computable homology functor. 

These results extend to the following situations : 
(1) when M replaces Dm, where M is a simply connected manifold 

satisfying H{M, Zn) = 0, 
(2) a relative version of (1), 
(3) replacing Zn by any finite group which acts freely on the sphere 

normal to K in Dm. 
In order to prove the above results the author has been led to 
(a) the extension of the Characteristic Variety Theorem [4] to the 

nonsimply connected case (see [1]), and 
(b) the extension of transversality and surgery techniques to the 

Poincaré duality category (see [2]). 
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