THE CONVERSE TO THE FIXED POINT THEOREM OF P. A. SMITH ${ }^{1}$

BY LOWELL JONES

Communicated by P. Emery Thomas, September 22, 1971
Z_{n}, Z_{n} will denote the multiplicative, and additive cyclic groups of order n.

Recall that a simplicial complex K is a Z_{n}-homology manifold if the link of every simplex in K is a Z_{n}-homology sphere. A Z_{n}-homology manifold pair $(K, \partial K)$ is defined similarly. A group action $G \times X \rightarrow X$ on the space X is semifree if, for each $x \in X, G$ acts either trivially or freely on the orbit of x.

Let n be an even integer, and $(K, \partial K) \subset\left(D^{m}, \partial D^{m}\right)$ a combinatorial embedding having even codimension $\geqq 6$ and further satisfying $K \cap \partial D^{m}=\partial K$.

Theorem. $K \subset D^{m}$ is the fixed point set of a semifree, combinatorial group action $Z_{n} \times D^{m} \rightarrow D^{m}$ if and only if
(1) $\bar{H}\left(K, Z_{n}\right)=0$,
(2) $(K, \partial K)$ is a Z_{n}-homology manifold pair.

The "only if" part of the theorem was proven by P. A. Smith [3].
The theorem holds for n odd provided the regular neighborhood for $(K, \partial K)$ in $\left(D^{m}, \partial D^{m}\right)$ admits a one-parameter cross section, e.g., $(K, \partial K)$ $\subset\left(D^{m}, \partial D^{m}\right)$ factors as $(K, \partial K) \subset\left(D^{m-2}, \partial D^{m-2}\right) \subset\left(D^{m}, \partial D^{m}\right)$.
A classification theorem can also be proven, which gives a bijective correspondence between equivalence classes of semifree Z_{n}-actions on D^{m} having $K \subset D^{m}$ for fixed point set and the elements of $\boldsymbol{H}_{0}(K, \partial K)$, where $\boldsymbol{H}_{*}()$ is a certain computable homology functor.

These results extend to the following situations:
(1) when M replaces D^{m}, where M is a simply connected manifold satisfying $\bar{H}\left(M, Z_{n}\right)=0$,
(2) a relative version of (1),
(3) replacing Z_{n} by any finite group which acts freely on the sphere normal to K in D^{m}.

In order to prove the above results the author has been led to
(a) the extension of the Characteristic Variety Theorem [4] to the nonsimply connected case (see [1]), and
(b) the extension of transversality and surgery techniques to the Poincaré duality category (see [2]).

[^0]
[^0]: AMS 1970 subject classifications. Primary 57C99.
 ${ }^{1}$ Partially supported by NSF GP-22723 and NSF GP-29073.

